多年来,由于编辑委员会的奉献,这本杂志一直拥有扎实而高质量的内容。当许多类似的出版物由于成本压力或缺乏合格的专家来帮助掌控时,内容质量有所下降,而 Electronics Cooling® 却一直屹立不倒。据我所知,它是少数读者仍然可以拿起或点击并找到值得阅读的相关文章的出版物之一。我还必须感谢并祝贺所有为该杂志做出贡献的坚定贡献者,感谢他们提供的所有高水准文章。从已经很忙的工程师和专家那里获得一流的内容并不总是那么容易,但这个社区确实团结在推进热管理和电子冷却艺术的旗帜下,提交了一些令人惊叹的投稿。
多年来,由于编辑委员会的不懈努力,这本杂志一直提供扎实且高质量的内容。当许多类似的出版物由于成本压力或缺乏合格的专家来指导时,内容质量却有所下降,而 Electronics Cooling® 却一直屹立不倒。据我所知,它是少数几本读者仍然可以拿起或点击并找到值得阅读的相关文章的出版物之一。我还必须感谢并祝贺所有为该杂志做出贡献的坚定贡献者,感谢他们提供的所有高质量文章。从已经很忙的工程师和专家那里获得一流的内容并不总是那么容易,但这个社区确实团结在推进热管理和电子冷却艺术的旗帜下,提交了一些令人惊叹的投稿。
这种使用高温测试来估计电子产品寿命的方法是由 1965 年首次发布的 MIL-HDBK-217 推广的。我个人见过的最早提到经验法则的案例是 1968 年柯林斯无线电公司 (Collins Radio) 准备的一份提案 [2],该提案将较高的工作温度与工作寿命缩短一半联系起来。该提案中的信息有两个有趣的方面:a) MIL-HDBK-217 的“新”结果表明,温度升高 15°C 会使寿命缩短一半;b) 最低和最高环境温度之间的热循环会使寿命缩短 8 倍。这表明,从诞生之日起,人们就认识到“10C=1/2”经验法则是一个粗略的近似值,除工作温度之外的其他因素也可能对电子产品的可靠性产生很大影响。
随着高度集成的电子产品和同时小型化的趋势不断升级,包括更快的处理器、更多功能和更高带宽,电子产品为了应对尺寸限制和严格的可靠性要求而变得越来越紧凑。结果是元件和电路板层面的热通量不断增加。在过去十年中,平均功率密度和散热率增加了近两倍 [1]。预计商用电子产品的热通量水平超过 100W/cm 2,部分军用高功率电子产品的热通量水平超过 1000W/cm 2,将很快成为一项现实且迫切的挑战。对于用于恶劣环境应用(如国防、汽车和石油勘探系统)的更复杂、更强大的电子产品的需求也在不断增长。恶劣环境电子产品的热管理对于各种电子系统的成功设计、制造和战术操作至关重要,以满足高温、环境、可靠性和成本效益要求。
EPISTAR 开发出一种技术,使用单个大型蓝色 LED 芯片(尺寸 = 45 mil)即可实现照明应用的高光效,无需对多个小尺寸芯片及其电线进行复杂的封装。该技术使色温为 5,000 K 时光效高达 135 lm/W 的白光 LED 能够以照明应用所需的简化封装实现如此高的光效。EPISTAR 开发出一种高压单片集成直流多芯片阵列,可显著改善电流分布。因此,与普通功率芯片相比,在 5.5 W 工作时,正向电压更低,插电效率 (WPE) 更高。HV LED 芯片封装可用于一般照明和任何需要高效白光的应用。
EPISTAR 开发出一种技术,使用单个大型蓝色 LED 芯片(尺寸 = 45 mil)即可实现照明应用的高光效,无需对许多小尺寸芯片及其电线进行复杂的封装。这项技术使色温为 5,000 K 时光效高达 135 lm/W 的白光 LED 能够以照明应用所需的简化封装实现如此高的光效。EPISTAR 开发出一种高压单片集成直流多芯片阵列,可显著改善电流扩散。因此,与普通功率芯片相比,在 5.5 W 操作下,正向电压更低,插电效率 (WPE) 更高。HV LED 芯片封装可用于一般照明和任何高效白光应用。
新款 Oslon SSL LED 属于 1W 级 LED,满足通用照明使用要求。它非常小巧、可靠且高效,即使在高电流下也是如此,而且由于其光束角为 80°,非常适合将光线注入外部透镜。“它能够高效处理高电流,使我们的客户能够创建特别节能且节省成本的照明解决方案。因此,Oslon LED 具备成为未来‘绿色’光源的所有属性,”欧司朗光电半导体 SSL 营销经理 Gunnar Moos 博士说道。其 7k/W 的低热阻简化了热管理。其小尺寸使设计师能够灵活地创建极其复杂的解决方案。如果需要特别强的光线,可以将多个光源组合成一个集群。除了超白光(5700 至 6500K)外,今年夏天还将推出中性白光和暖白光。其色温范围为 2700 至 4500K
1 线性稳压器的电位器模型 3 ......................。。。。。。。。。。。。。。。。。。。。。。。。..2 功率耗散表 来自 TPS763xx 数据表 (2000 年 4 月) 6 ..........................3 功率耗散表 来自 TPS768xx 数据表 (99 年 7 月) 7 .............................4 5 引线 SOT223 的热阻与 PCB 面积 7 ......。。。。。。。。。。。。。。。。。。。。。。。。.......5 封装的热和面积比较 8 ..............。。。。。。。。。。........................6 稳态热当量模型 9 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 100 µ A l Q PMOS 和 PNP LDO 的比较 15 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 电压降示例 16 ......................。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 功率耗散表 来自 TPS76318 数据表 (5 月 1 日) 17 ..........................10 来自 REG101 数据表 (07 月 01 日) 18 ...............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
预防灾难性的热力失败,定义为直接,热诱导的电子功能的总丢失,必须将电子热控制的主要和最重要的目的视为电子功能。ca骨失败可能是由于组件/系统性能的显着恶化或相关包装水平之一的结构完整性的丧失而导致的。在早期的微电体系统中,灾难性失败主要是功能性的,并认为是由于偏置电压的变化,再生加热产生的热失控和掺杂剂迁移,这些变化均发生在升高的晶体管连接温度下。尽管这些故障模式在设备开发过程中仍可能发生,但改进的硅模拟工具和热补偿的集成电路已在很大程度上使这些关注点安静了,并大大扩大了当今基于硅的逻辑和内存设备的工作温度范围。在使用CMOS设备用于高性能系统中仍然存在类似的问题。由于CMOS电路速度对温度的依赖性,可能有必要限制最高芯片温度以达到所需的周期时间和/或保持系统中的时机余量。
r TH(J-A)表示Sytem的热电阻,并包括与包装接触的硅死亡,包装和任何热量,以将热量耗散到环境中。在给定的耗散级别的p d中,在环境温度t a上的ΔTj j t a的增加由以下方式给出:∆ t j = r th(j-a)x p d r th(j-a)(j-a)由设备内的许多元素和外部组成。如果单独考虑设备,则从硅死亡到铅框架,再到成型化合物,再到环境的耗散路径给出。实验值在此条件下非常大,尤其是对于小包装(例如小型轮廓类型)。但是,在实践中没有达到这一定位,并且当前工作中包含的详细数据表明了最坏的情况(浮动样本)。在大多数应用中,表面安装的设备都被焊接到基板上(通常是环氧玻璃(FR4),并通过焊接接头和铜互连进行热接触。在这种情况下,将热电路产生给铅框,然后转移给铅框,然后转移到substrate。图A显示了实验模块。