一般学习目标是培训工程师进行高技术/科学准备,有资格进行和管理与太空领域的研究和设计相关的活动。太空工程学的硕士学位毕业生具有完全开发与太空任务的设计,分析和验证有关的活动的技能。在这些领域中,强调了专家的技能:任务分析,太空系统的热结构设计,推进和能量子系统的设计,轨道和态度控制,与地球站的操作以及沟通,太空系统的整合以及大量启动后操作。在教育环境中提供了各种课程中提供的知识,除了获得收购外,还旨在发展学生的跨学科整合能力和能力以科学严格的方式解决新的和复杂的问题。
多模型和多尺度耦合的扩展是多代码耦合,其中不同的程序耦合并一起运行。例如,一个可以是 PAM-CRASH,另一个可以是客户程序。这两个不同程序之间的交互将通过接口(如匹配网格实体)进行,并且交换将通过基于消息传递接口 (MPI) 的完整库进行,该库将称为 ESI 耦合库 (ECL)。通过使用此库,耦合将以这样一种方式完成,即一个程序对另一个程序的源代码的访问非常有限。软件供应商之间的协作将更加容易,每个合作伙伴都保留其程序的机密性。ESI 集团和汽车合作伙伴之间已经完成了多代码耦合的成功测试案例。多代码耦合也可以在多物理环境框架中使用,如流体结构相互作用或热结构相互作用或任何其他类型的耦合。这证明了这种“新方法”在试验空间世界中的巨大潜力。
摘要。为层积云顶部物理学 (POST) 实地研究活动设计了一种改进的 UFT-M 版超快速机载温度计 UFT,旨在测量云内温度。其结构的改进提高了传感器的可靠性,在 17 次飞行中的 15 次中提供了有价值的测量结果。对数据的过度采样可以有效校正由机载航空电子系统的电磁传输干扰和传感器结构导致的热噪声造成的伪影。当将 UFT-M 记录平均为 1.4 和 55 米分辨率时,与罗斯蒙特外壳中温度计的类似记录相比,表明外壳甚至会扭曲低分辨率的机载温度测量。在 POST 过程中使用 UFT-M 收集的数据以最大分辨率约 1 厘米反演层积云和覆盖层的热结构。本文介绍并讨论了 UFT-M 记录的示例。
扩展具有明显表面表达的外部区域外的地热能使用的关键部分是对地壳热结构有很好的了解。但是,新西兰大部分地区的地壳温度分布尚不清楚。高质量的地壳温度测量值稀疏且分布不均。此外,新西兰的热流动方式很复杂,对流体对流和对流的影响很大,以及与相对年轻且高度构造的陆地相关的瞬态过程(例如,最近的沉积和侵蚀)。由于缺乏关于地壳岩石热性能的良好数据,预测地壳温度的进一步限制。我们正在使用一维瞬态热流建模方法开发国家温度图。为了支持该模型,我们已经建立了热性能测量能力,并将测量与地球化学和矿物学数据结合使用来确定热性能。本文为将各种数据集集成到新西兰的国家温度模型中介绍了进展。
这项研究的重点是HES-DABA地区的流体夹杂物。微热测量是在从表面静脉收集的石英上进行的,该石英分为两个阶段:液体和蒸气。平均均质化温度范围为150°C至367°C,冰的熔点范围为-0.05°C至-1.14°C,表明纳入溶液由0.1至1.9等方程组成。wt%NaCl。评估热史和热结构以估计形成温度。通过X射线衍射分析选定的样品,以提供地热储层的直接数据;这是必要的,因为地热流体通过它们的相互作用可以改变岩石的组成和特性。主要改变的矿物是石英,方解石,脂肪,附子,赤铁矿,伊利石,蒙脱石和氯酸盐。因此,粘土构成向高温环境的过渡,这是由高温水热改变矿物(例如石英(> 180°C)和epidote(〜250°C)所证明的。
于2021年3月13日收到,接受了2021年3月13日接受:10.3151/jact.19.240抽象的高强度和轻量级是施工领域中复合材料的两个最重要的参数。在这里,我们通过使用原位聚合聚合酰胺和超稳定泡沫开发了一种具有三明治多孔结构的新型泡沫混凝土结构,与正常多孔混凝土相比,它可以获得更高的机械强度。刚度与重量的比率最大化,以达到最佳的三明治多孔结构大小。SEM图像表明,泡沫混凝土和聚合物改性水泥糊之间的界面键紧密而坚固。新颖结构的弯曲强度比相同密度的泡沫混凝土高65.6%。建立了串联模型,以计算新型泡沫混凝土结构的复合导热率,表明与正常泡沫混凝土相比,热绝缘材料略有改进。此外,通过构建此三明治多孔结构,防水性显示出略有增加。希望,与三明治多孔结构相结合可以为设计轻巧和高强度隔热的热结构提供新的方法。
1。简介国家航空和太空行政管理已宣布打算对火星行星进行新的任务。火星观察者是一项低成本的任务,重点是对火星地理学和气候学研究,并利用商业上可用的航天器。单个航天器将于1990年推出,并将在1991年进入火星周围的361 km高度轨道。本文中描述的压力调节器红外辐射计(PMIRR)已被选为火星观察员任务,并正在喷射推进实验室中开发。PMIRR是一个九通道的肢体,纳迪尔扫描大气声音符合签名,以解决该任务的气候科学目标。这些是在季节性周期内确定火星挥发性材料和灰尘的时间和空间分布,丰度,来源和水槽,并探索火星大气循环的结构和方面。PMIRR采用过滤器和气体相关辐射指定,主要用于绘制从表面至80 km的大气的3-D时间依赖的热结构,这是大气中的灰尘负荷 -
第 26 届 AIAA 国际太空飞机和高超音速系统和技术会议将于 2025 年与 AIAA 科学技术 (SciTech) 论坛和博览会同期举行,将为来自世界各地的与会者提供一个讨论和交流信息的论坛,讨论与太空飞机和高超音速大气飞行器相关的前沿研究和开发活动以及这些能力的基础技术。会议将介绍来自北美、南美、澳大利亚、欧洲和亚洲的国家计划,并讨论多种国际合作机会。技术论文主题包括计划中和正在进行的航天飞机和高超音速飞行器计划、先进运载火箭和高超音速大气飞行器概念、商业太空旅游概念、地面和飞行测试技术、结果和经验教训、再入飞行器系统和技术、航天飞机和高超音速飞行器的空气动力学和气动热力学、制导和控制系统、火箭、冲压发动机、超音速冲压发动机和其他先进推进系统,包括组件技术(例如进气口、燃烧系统、燃油喷射概念、点火和火焰稳定概念、喷嘴)、高温材料、热结构和热保护系统、健康监测和管理技术等。将围绕全球关注的相关主题组织特别小组会议。