个人简历 姓名:Wongkot Wongsapai 职位:助理教授 地址:清迈大学工程学院机械工程系,239 Suthep, Muang, Chiang Mai 50200 泰国 电话 +66-53-944-146 传真:+66-53-944-145 电子邮箱:wongkot@eng.cmu.ac.th Wongkot Wongsapai 毕业于清迈大学机械工程系,并取得 AIT 能源经济与规划高级研究证书。凭借二十多年的从业经验,他参与过来自不同组织的 120 多个能源项目,例如世界银行、IEA、giz、JICA、ERIA、泰国能源部,主要分为四类;即 (i) 工业、服务业和家庭部门的能源效率提高,包括开发该国指定工厂和建筑物的数据库系统 (ii) 沼气和生物质的可再生能源技术,(iii) 能源政策和规划,以及 (iv) 温室气体管理,特别是 NAMA NDC 和 MRV 以及该国的边际减排成本 (MAC)。自 2019 年起,他还担任能源部能源部门气候变化国家工作组。他还是泰国小规模牲畜废物管理计划的项目经理,该计划是泰国第一个清洁发展机制活动计划 (CDM-PoA)。在世界银行的支持下,养猪场产生的沼气每年最多可产生 360,000 吨二氧化碳碳信用额。他还指导了世界银行的市场准备伙伴关系 (PMR),负责制定泰国主要工业和商业部门的能源效率绩效基线和目标设定。他的专长还包括制定能源和气候变化问题的能力建设计划,他是能源领域国家气候变化技术需求评估 (TNA) 的项目经理。在学术方面,他发表了许多国际论文,包括 ISI 和 Scopus 索引的《能源政策》、《能源报告》等。他是国际能源署 (IEA) 出版物《泰国电力部门的碳定价》的合著者,该出版物于 2021 年 3 月推出。教育:1994 年工学学士(机械工程,清迈大学)。1997 年工学硕士(机械工程,清迈大学)。2005 年高级研究证书(能源经济与规划),亚洲理工学院 (AIT) 2012 年注册培训师:温室气体协议(由 WRI 和 WBCSD 颁发)
通讯地址:ase@mit.edu 简介:需要储能来实现可调度的可再生能源供应,从而实现电网的完全脱碳。然而,这只有在大幅降低成本的情况下才能实现,而目前的电池技术预计目标就是将单位能量成本 (CPE) 降至 20 美元/千瓦时 1–3 。值得注意的是,要实现完全脱碳,需要以如此低的成本进行长达 100 小时的长时间储能。先前的分析表明,在这种可再生能源渗透率高的情况下,在比较不同技术的成本时,CPE 比往返效率 (RTE) 或单位功率成本 (CPP) 等其他参数更为关键。在这里,我们引入了一种电力存储概念,将电能作为显热存储在石墨存储块中,并使用多结热光伏 (TPV) 作为热机将其根据需要转换回电能。该设计是 Amy 等人提出的系统的产物。 2019 年,4 日,该发明进行了修改,使用固体石墨介质和熔融锡作为传热流体,而不是同时使用硅。原因有两个:(1) 石墨的 CPE 几乎比硅低 10 倍,这源于其单位质量成本较低(即 0.5 美元/千克 vs. 1.5 美元/千克)和单位质量热容量较高(2000 J kg -1 K -1 vs. 950 J kg -1 K -1 );(2) 锡的熔点和锡在石墨中的溶解度远低于硅,这减少了研发 (R&D) 过程中必须克服的问题数量。使用石墨也消除了对第二个罐子的需要,但使用固体介质的主要缺点是无法轻易提供稳定的放电速率,因为随着石墨在放电过程中冷却,储存器的功率输出将随时间而变化。因此,本研究的目的是研究系统设计中的这些变化如何影响整体技术经济。Amy 的论文中提出的技术经济分析在此重复(即使用相同的方法),但进行了更新和修改以反映设计变化,本文档提供了此分析的摘要。
摘要 中深钻孔热能存储 (MD-BTES) 系统是一种有前途的技术,可用于可持续、高效的季节性热能存储和区域供热分配。这些创新系统旨在使用钻孔热交换器 (BHE) 将多余的热能(例如来自可再生能源的热量)存储在地下,并在需要加热或冷却时释放出来。MD-BTES 系统可以在向更可持续的能源供应过渡的过程中发挥关键作用,其开发涵盖从勘探到区域供热网的连接和实施等各个阶段。本文介绍了从该领域的两个项目获得的见解,即 SKEWS(由德国联邦政府资助;编号:03EE4030A)和 PUSH-IT(地平线欧洲资助协议,编号:101096566)项目,以突出它们对推进 MD-BTES 技术实施的贡献。MD-BTES 的勘探阶段包括通过钻孔确定适合储能的地质构造。 SKEWS 是“Saisonaler Kristalliner Erdwärmesondenspeicher”或季节性结晶钻孔热存储的缩写,在这一阶段发挥着重要作用。该项目主要侧重于实施一个具有四个钻孔热交换器的真实规模示范场。第一步包括地球物理勘测、地质测绘和分析,旨在确定具有最经济实惠的中深钻孔储层条件的最佳场址选择。通过采用先进的地球物理技术,SKEWS 项目确定了具有必要地质属性的区域,例如热导率和足够的渗透性,以实现高效的能量存储和回收。此外,SKEWS 还生成了数据集,以评估在城市和近郊地区钻探和安装钻孔系统的可行性和环境影响。目前,现场的钻孔已完成,采用同轴 BHE 设计。 SKEWS 任务包含一个实验性的存储和提取程序,将于 2026 年结束。这种方法使 SKEWS 成为 PUSH-IT 联盟中理想的 BTES 演示站点。PUSH-IT 项目代表“地热储层地下储热试点”,在开发阶段充当领先的研究站点,并解决存储系统与现有区域供热网集成的数值建模和调试的主题方面,特别是在达姆施塔特站点。MD-BTES 与区域供热网的连接代表了研究 MD-BTES 用于城市能源系统的潜力的最后一步。为了说明这一点,将提供一个示例连接场景,并详细说明在达姆施塔特工业大学校园规模上进行技术开发和部署的联合模拟、控制和地下过程建模策略。这两个项目获得的见解和观点对于克服大规模部署相关的技术、经济和监管挑战非常有价值,最终有助于减少温室气体排放并促进可持续的城市能源系统。
摘要。随着全球向无污染可再生能源的转变,对可靠、经济高效、可普遍适用于不同地区的公用事业规模能源存储的需求日益明显。这些能源存储技术的运营和管理带来了独特的挑战,这种挑战与传统的化石燃料形式的能源存储本质上不同。对公用事业规模热能存储的商业模式、价值主张和经济可行性的调查是美国能源部赞助的一项名为 Energy I-Corps 的项目的一部分。在此计划期间,项目团队联系了一系列行业利益相关者,就公用事业规模发电的热能存储主题进行了采访。特别关注的是基于美国电网背景下的市场需求的商业模式。现有热电厂基础设施的利用和再利用为实施本文讨论的热能存储形式提供了最可行的商业模式。
技术描述 在含水层热能存储 (ATES) 中,多余的热量被储存在地下含水层中,以便在后期回收热量。热能被储存为温暖的地下水。地下水还用作将热量传输到地下和从地下传输热量的载体。因此,热能通过从含水层通过井生产和注入地下水来储存和回收。ATES 系统的容量范围从 0.33 MW 到 20 MW(Fleuchaus 等人,2018 年)。通常,ATES 按季节运行。夏季,来自燃气或燃煤发电厂、太阳能发电厂或热电联产厂的多余热量通过热交换器转移到冷地下水中。由此产生的温暖地下水将热量输送到含水层,热量在那里储存起来。在冬季,ATES 通过逆转生产井和注入井中的流量以相反的方向运行。现在,通过热交换器从温暖的地下水中回收储存的热量并用于供暖,而将产生的冷地下水重新注入含水层。通常,注入井和生产井之间的距离在 1000 米到 2000 米之间(Stober 和 Bucher 2014)。含水层的深度也各不相同。例如,在柏林,ATES 的深度在浅层含水层中为 30 米到 60 米之间,而在诺伊鲁平,深度约为 1700 米。在荷兰,大多数 ATES 系统使用地下深度在 20 米到 150 米之间的含水层(Bloemendal 和 Hartog 2018)。与深度相对应,热存储以不同的温度运行。低温 (LT) ATES 的运行温度低于 30°C,通常位于浅层含水层;中温 (MT) ATES 指的是 30°C 至 50°C 之间的温度范围;高温 (HT) ATES 的运行温度为 50°C 及以上(Lee 2013)。与 MT 和 HT-ATES 相比,由于 LT-ATES 中的温度较低,因此使用热泵将温度升高到加热相关建筑物所需的水平,例如 40°C。同时,抽取的地下水被冷却到 5°C 至 8°C 之间的温度。随后,将冷地下水重新注入冷井。夏季,可以使用冷井中的地下水有效地为建筑物降温。由于热泵的冷却过程,该水被加热到 14°C 至 18°C 之间的温度范围。随后,加热的地下水通过暖井储存在 LT-ATES 中,以便在冬季回收。如果冷却不需要在前一个冬季储存的低温地下水附近安装任何设施,则称为免费冷却。当多余的热量
能源储存是实现欧盟到 2050 年实现气候中和目标的关键因素之一,即实现温室气体 (GHG) 净零排放经济。脱碳和向清洁能源的过渡,加上能源效率的提高,将给使用的能源系统带来重大变化。热能储存 (TES) 系统能够通过能源转换和储存提供电力负荷转移,有助于开发灵活的能源系统,管理可再生能源固有的间歇性。
摘要:热能存储 (TES) 是提高聚光太阳能发电 (CSP) 电厂可调度性的最合适解决方案。用作显热存储 (SHS) 的熔盐是最广泛的 TES 介质。然而,新颖且有前景的 TES 材料可以以不同的配置应用于 CSP 电厂,从而最大限度地降低 TES 成本并提高工作温度,以提高相关电源块的热性能。本综述的第一个目标是概述目前运营设施中最广泛的 CSP 技术、TES 技术和 TES-CSP 配置。在收集完这些信息后,第二个目标是收集和展示过去十年 (2011-2021) 内现有的欧洲和北美 TES-CSP 研究与开发 (R&D) 项目。介绍了与这些项目相关的数据,例如 TES-CSP 配置路径、所应用的 TES 和 CSP 技术、存储容量、相关电源块以及商业升级项目的平准化电力成本 (LCOE)。此外,还提取了项目信息,例如位置、研究期、项目负责人和拨款预算。建立了从 2011 年开始的研发项目的时间表,显示了项目结束时达到的技术就绪水平 (TRL)。
经过认证的 Belimo Thermal Energy Meter™ 和增强型 Belimo Energy Valve™ 的结合实现了透明的热能管理。“能源控制”和“经过认证的能源测量和计费”两个世界现在正在统一。它们使用单个设备通过基于 IoT 的直接成本核算,准确测量和监控加热和冷却系统中的热流和能源消耗。新的 MID 认证热能计确保高精度和可靠性,从而实现轻松高效的计费。然而,可靠的测量仅仅是个开始。Belimo Energy Valve™ 可即时控制热流并优化对用户的能源供应。凭借这一重要组合,Belimo 正在迈入综合热能管理的新时代,并将所有属于它们的东西整合在一起。
摘要。随着全球向无污染可再生能源的转变,对可靠、经济高效、可普遍适用于不同地区的公用事业规模能源存储的需求日益明显。这些能源存储技术的运营和管理带来了独特的挑战,这种挑战与传统的化石燃料形式的能源存储本质上不同。对公用事业规模热能存储的商业模式、价值主张和经济可行性的调查是美国能源部赞助的一项名为 Energy I-Corps 的项目的一部分。在此计划期间,项目团队联系了一系列行业利益相关者,就公用事业规模发电的热能存储主题进行了采访。特别关注的是基于美国电网背景下的市场需求的商业模式。现有热电厂基础设施的利用和再利用为实施本文讨论的热能存储形式提供了最可行的商业模式。
在夏季,Buech能源中心(EZB)在地下地热探针场中存储了90°C地区加热网络的盈余热量。在冬季,存储设施回到了地区供暖网络中。