超级岩石(SHR)地热能系统的钻井和井结构的研究边界 - 可再生,基本负荷电力通过在深处(> 5 km)循环水,热(> 374°C)岩石产生 - 稳步前进。在多晶钻石碳化物(PDC)钻头设计中的最新成就,提高了穿透速率(ROP)到硬岩中的成就,并且隔热钻孔的开发表明,SHR地热项目的深入钻井正处于不可通知的地平线上。但是,在敌对地下地质环境中,几个关键的技术差距仍然阻碍了深入钻探的方式。技术公司和实验室必须在专门的钻机,位技术,高温下井工具和温度管理设备方面取得快速的进步。目前,这些钻井系统以及进入深层岩层所需的时间 - 创造了巨大的项目成本。要将SHR Geothermal带入商业生存能力,技术公司和实验室必须迅速开发,测试和部署新技术。本报告回顾了最先进的深度地热钻井和井建筑技术,确定了现有的技术差距,并提出了克服这些差距的策略。从理论到商业上可扩展的1-9之间,每种技术都有1-9之间的技术准备水平(TRL)。总体而言,我们发现可以通过部署现有技术的组合来钻孔地热井,并且SHR钻孔的技术挑战是可以克服的。经济挑战是这些钻井系统的可用性有限和测试的函数,随着SHR地热工业的扩展,这两者都会减少。这些技术共有的一阶差距是缺乏在场地和受控实验室条件下获得SHR条件的机会。没有开放式实验设施和试点站点,这些技术将无法进行迭代的改进,以脱离风险的SHR钻探和推动行业前进。
农村和农业收入以及可再生能源(RAISE)倡议的储蓄将为美国农村的小型农业企业提供储蓄和额外的收入来源:•自1981年以来,该国已损失了近54.5万农场和1.55亿英亩的前农田。•近年来,该国享有创纪录的农场收入,但收入集中在7%的农场中,累计占收入的89%。•面对成本增加,土地使用竞争和合并,小型家庭农民不必努力工作两倍;我们应该找到使他们从土地产生收入的其他方法。
会议主席:Marco Pritoni 博士 (LBNL),演讲人:Chuck Booten 博士 (NREL),主要贡献者:Sajith Wijesuriya 博士 (NREL)、Ravi Kishore 博士 (NREL) 本文由美国能源部 (DOE) 下属可持续能源联盟有限责任公司运营的国家可再生能源实验室根据合同号 DE-AC36-08GO28308 撰写。资金由美国能源部能源效率办公室和可再生能源建筑技术办公室提供。文章中表达的观点不一定代表能源部或美国政府的观点。美国政府保留;并且出版商在接受发表本文时承认美国政府保留非独占的、已付费的、不可撤销的全球许可,可以为美国政府目的出版或复制本文的已出版形式,或允许他人这样做。
全球对节能和环境可疑性的日益关注强调了减少温室气体(GHG)排放的关键作用,尤其是从运输部门中。电池电动Vehicles(BEV)已成为一个关键解决方案,这是由严格的调节目标和消费者对可持续移动性的需求不断增长的驱动。然而,实现BEV的广泛采用需要应对诸如“范围焦虑”之类的挑战,这源于由于高能量消耗而导致的驱动范围有限,尤其是对于热管理。本文探讨了BEV中的优化热能管理(TEM)系统,以提高能效和扩展车辆范围。为最先进的弹性热能管理(FTEM)系统开发了一种新型的面向控制的系统级模型,该系统集成了HVAC和热泵功能。该研究重点是应用分布式操作技术,利用模型预测控制(MPC)和乘数的交替方向方法(ADMM)来实现实时能源节省。所提出的方法是针对能源消耗的重大减少,尤其是在不同的环境条件下,使BEV在大众市场中更具竞争力。这项工作通过展示提高车辆性能和可持续性的先进策略来有助于更广泛的向零发射运输过渡。
我们还根据几个指标评估了每种能源和技术:资本和运营支出、能源成本、技术成熟度、市场增长前景、热效率、二氧化碳排放量和其他环境风险。跨技术比较突出了每种能源和技术对纺织行业的整体成熟度和适用性。生物质虽然具有碳中和的潜力,但也面临着森林砍伐和土地利用变化等挑战。天然气虽然成熟,但仍面临着价格波动和气候与环境风险,尤其是甲烷泄漏,这可能会抵消其与煤炭相比的气候效益。太阳能热技术虽然能够提供零碳热能,但在纺织应用方面面临挑战,因为该行业有大量的蒸汽和
摘要。热能存储 (TES) 系统已广泛应用于聚光太阳能发电 (CSP) 电厂,以确保系统效率。本研究利用具有优异热特性的电解铜粉 (ECP)、氧化石墨烯 (GO) 和铅冶炼渣 (LSS) 骨料(一种采矿废料),旨在制造冶金土聚物材料作为 TES 系统中的存储介质。本文研究了 ECP 含量(0、5%、10%、15%、20%)对掺有 LSS 骨料的 GO 工程土聚物混合物的强度、比热、热导率和热稳定性的影响。加入 10% 的 ECP 后,流速和抗压强度显著提高。增加 ECP 含量会提高土聚物的热导率,但会降低土聚物的比热。结果表明,ECP 是一种很有前途的成分,可以加入土聚物中以增强其物理机械特性和热稳定性。 ECP、GO和LSS相结合生产用于TES系统的土工聚合物材料可以为CSP工厂和行业废物回收提供环保解决方案。
当两种成分不同的溶液混合时,会释放出混合的自由能。过去几十年来,人们深入研究了这种现象,以便获取所谓的盐度梯度能。电容混合 (CapMix) 是能够获取这种能量的最早的技术之一,其工作机制基于流体电化学电池,类似于超级电容器。由于这种混合现象适用于液体和气体,因此其想法是从人为 CO2 中获取能量。ERC 资助的 CO2CAP 项目首次提出利用绿色离子液体 (IL),即室温下的生物衍生熔盐,作为 CapMix 电池中的电解质和 CO2 吸收介质。其原理是在两个电极充电/放电期间,在 IL 中流动浓缩的 CO2 气流,交替进行真空步骤。CO2 将在电极/IL 界面处引起电荷的电双层 (EDL) 膨胀,从而将释放的混合能转化为电能。此外,我们预计,当存在热梯度以收集低品位废热时,也会出现类似的现象。本博士论文的主要研究目标包括(不一定全部):o 设计、制造和电/电化学表征定制流体超级电容器,利用创新架构能够
3 生物甲烷装置不直接产生热量,而是根据注入天然气管网的绿色气体量来支付费用。但是,我们计算了注入的绿色气体量的等效热量输出,这里使用了该数字。 4 此处报告的数字与能源安全与净零排放部 (DESNZ) 报告的数字不同。这是由于 Ofgem 和 DESNZ 对目前正在评估重新认证申请的装置的计数方式不同。在评估重新认证申请时,DESNZ 会排除原始认证,而我们会继续计算原始认证,直到做出决定。如果获得批准,我们和 DESNZ 都会计算重新认证来代替原始认证。这意味着报告中的数字(包括认证容量、产生的热量和支付的费用)与 DESNZ 报告的数字略有不同。