为了构建脑细胞,电路和区域的生物物理详细模型,越来越多地采用数据驱动的方法。这有助于获得一项模拟活动,该活动尽可能忠实地重现实验记录的神经动力学,并将模型转变为基于控制神经细胞性质的原理进行预测的有用框架。在这种情况下,对现有神经模型和数据的访问有助于计算神经科学家的工作,并促进了其新颖性,因为科学界的增长越来越大,神经模型的类型,大小和数量逐渐增加。尽管如此,即使保证可访问性,数据和模型也很少重复使用,因为很难检索,提取和/或了解相关信息,并且通常需要下载和修改单个文件,执行神经数据分析,优化模型参数,并借到自己的资源。虽然着重于构建海马细胞的生物物理和形态准确模型,但我们创建了一个在线资源,即Hippocampus Hub的构建部分 - 一种用于研究海马的科学门户网站,用于研究海马的数据,从不同的在线开放式存储库中收集了来自不同的在线开放式存储库,并允许他们作为单个蜂窝模型构建单个模型构建单个模型的收集。工具和数据的互操作性是我们介绍的工作的关键功能。通过简单的单击和收集程序,例如填写在线商店的购物车,研究人员可以直观地选择感兴趣的文件(即电生理记录,神经形态和模型组件),并开始构建数据驱动的海马神经元模型。这样的工作流程重要的是一个模型优化过程,该过程利用了透明授予用户的高性能计算资源,以及用于运行优化模型的模拟的框架,均通过Ebrains Hodgkin-Huxley神经元建筑商在线工具获得。
密歇根州的医学适用于患有病情的典型患者。它可能包括指向密歇根医学并未创建的在线内容的链接,密歇根州医学不承担责任。它不能取代您的医疗保健提供者的医疗建议,因为您的经验可能与典型患者的经验不同。如果您对本文档,状况或治疗计划有任何疑问,请与您的医疗保健提供者交谈。
国务卿致辞 根据总统在 2020 年 10 月 31 日的总统备忘录《关于保护所有美国人的就业、经济机会和国家安全的备忘录》中的指示,能源部提交了以下关于国内禁止水力压裂技术的经济和国家安全结果的报告。本报告涉及总统备忘录的第 4 节(破坏水力压裂和其他技术对国内和经济的影响)和第 5 节(破坏水力压裂和其他技术对国家安全的影响)。 我很自豪地向总统经济政策助理和总统国家安全事务助理提交这份报告,因为正是水力压裂这样的技术释放了美国的自然资源,使美国成为世界上最大的天然气和石油生产国,同时还创造了高薪就业机会并带来了可观的消费者储蓄。正如本报告所总结的,禁止水力压裂法(一种在美国和其他国家已经使用了 50 多年的方法)将导致数百万人失业、汽油价格飙升以及所有美国人的电费上涨。这样的禁令将使美国失去作为最大石油和天然气生产国的地位,到 2025 年,我们将重新成为石油和天然气的净进口国。这将削弱美国的地缘政治地位,并对我们的国家安全产生负面影响。如果您有任何问题或需要更多信息,请联系我或国会和政府间事务助理部长梅利莎·伯尼森女士,电话:(202) 586-5450。
该表基于 2013 年 1 月 1 日至 2022 年 9 月 29 日期间的 FracFocus 数据,逐县显示了德克萨斯州油气公司注入 PTFE 用于水力压裂、被 EPA 确定为 PFAS 或使用至少一种氟表面活性剂或潜在氟表面活性剂进行水力压裂的油井数量。在此表中,术语“氟表面活性剂”涵盖“非离子氟表面活性剂”的公开用途,而术语“潜在氟表面活性剂”涵盖“氟烷基醇取代聚乙二醇”的公开用途,被 EPA 确定为 PFAS。两位化学家将非离子氟表面活性剂鉴定为 PFAS 或可能降解为 PFAS 的前体。第三位化学家将它们鉴定为可能的 PFAS,一位委员会认证的毒理学家将它们鉴定为潜在的 PFAS。总重量数字反映了我们有足够信息来计算化学品重量的所有记录的总和。
中红外仪器 (MIRI) 由英国牵头的十个欧洲成员国与 NASA 喷气推进实验室合作设计、建造和测试。欧洲贡献由科学与技术设施委员会 (STFC) 的 Gillian Wright 博士牵头,光学相机和热保护的大部分设计由 STFC 科学家和工程师完成。整个 MIRI 仪器随后在 STFC 卢瑟福阿普尔顿实验室的热真空室和振动测试设施中进行测试,以确保其在发射后完好无损并在恶劣的太空环境中完美运行。
结果和讨论微生物测试的完整和截短的140°C灭菌周期的微生物测试结果如表1所示。在每种情况下,在140°C的干热周期中的任何一个中,来自不锈钢载体的任何样品中均未发现生长,证明了全部消除。在不同日期,所有截短的运行均显示结果的一致性,增长为零。阴性对照没有显示生长(未显示结果),表明技术人员没有样品污染。阳性对照与测试样品相同,除了未放入孵化器中。由于所有灭菌周期都能够消除所有微生物,包括用于干热量灭菌的规定生物学指标孢子,因此恢复程序仅用于阳性对照。表2中为323 L模型提供的结果清楚地表明,恢复的所有正面对照至少为10 6 CFU/载体,因此成功满足了所有接受标准。表3中给出的232升模型中所示的结果表明,最重要的生物学指标(抗抗热孢子孢子芽孢杆菌)最少回收了10 6 CFU/载体。这些结果证明,140°C的灭菌程序至少达到6-7 log 10减少抗脂肪芽孢杆菌的抗热孢子,符合EUP和USP的干热量灭菌所需的灭菌标准。
非热血浆辅助甲烷热解已成为轻度条件下氢生产的一种有希望的方法,同时产生了有价值的碳材料。在此,我们开发了一个等离子化学动力学模型,以阐明与氢气解析涉及氢和固体碳(GA)反应器内的甲烷热解的潜在反应机制。开发了一个零维(0D)化学动力学模型,以模拟基于GA的甲烷热解过程中的血浆化学,并结合了涉及电子,激发物种,离子和重物的反应。该模型准确地预测了与实验数据一致的甲烷转化和产品选择性。观察到氢与甲烷转化率之间存在很强的相关性,主要是由反应CH 4 + H→CH 3 + H 2驱动,对氢的形成贡献44.2%,而甲烷耗竭的37.7%。电子与碳氢化合物的影响碰撞起着次要作用,占H 2形成的31.1%。这项工作提供了对GA辅助甲烷热解中固体碳形成机制的详细研究。大多数固体碳源于通过反应E + C 2 H 2→E + C 2 + H 2 /2H的电子撞击C 2 H 2的分离以及随后的C 2缩合。c 2自由基被突出显示为固体碳形成的主要因素,占总碳产量的95.0%,这可能是由于C 2 H 2中相对较低的C - H解离能。这项动力学研究提供了对H 2背后的机制和在GA辅助甲烷热解过程中的固体形成机制的全面理解。
干细胞壁ches已在更高再生能力的组织中进行了彻底研究,但在细胞更新缓慢(例如人心脏)的组织中没有进行彻底研究。左心室连接(AVJ)是二尖瓣的底部,以前已被提议作为成年人类心脏心脏祖细胞的利基区域。在本研究中,我们探索了人心的右侧,即三尖瓣的基础,以研究该地区作为祖细胞生态位的潜力。来自外植的人类心脏的成对活检是从多器官供体中收集的(n = 12)。使用RNA测序比较了AVJ,右心房(RA)和右心室(RV)的侧面表达与干细胞小裂相关的生物标志物的表达。基因表达数据表明与拟议小裂区(即AVJ)中与胚胎发育和细胞外基质(ECM)组成相关的基因上调。此外,免疫组织化学在同一区域内显示出胎儿心脏标志物MDR1,SSEA4和WT1的高表达。检测到HIF1 A的核表达表明缺氧。 稀有细胞是通过与心肌细胞核标记PCM1和心脏肌钙蛋白T(CTNT)的增殖标记PCNA和Ki67共同染色的,表明小心肌细胞的增殖。 还发现了 WT1 + / CTNT +和SSEA4 + / CTNT +细胞,表明心肌细胞特异性祖细胞。 随着距三尖瓣距离的距离,干细胞标记的表达逐渐减小。 在RV组织中未观察到这些标记的表达。检测到HIF1 A的核表达表明缺氧。稀有细胞是通过与心肌细胞核标记PCM1和心脏肌钙蛋白T(CTNT)的增殖标记PCNA和Ki67共同染色的,表明小心肌细胞的增殖。WT1 + / CTNT +和SSEA4 + / CTNT +细胞,表明心肌细胞特异性祖细胞。随着距三尖瓣距离的距离,干细胞标记的表达逐渐减小。在RV组织中未观察到这些标记的表达。总而言之,三尖瓣的底部是一个富含ECM的区域,该区域含有具有几个干细胞小裂相关标记的细胞。干细胞标记与CTNT的共表达表示心肌细胞特异性祖细胞。我们以前报道了二尖瓣板底部的类似数据,因此提出人类的成年心肌细胞祖细胞位于两个室内瓣膜周围。