由于其出色的物理,化学和电化学特性,热解碳已成为各种技术应用的有前途的材料[1]。热解碳可以通过在受控条件下在高温和惰性气氛中的受控条件下的聚合物碳前体进行热解。通过调整热解条件,碳原子的杂交以及衍生碳的物理化学特性可以量身定制。尽管一些研究人员试图以原子量规模研究石墨化过程,但全面的理解仍然难以捉摸。透射电子显微镜(TEM)非常适合研究纳米级热处理过程中聚合物薄膜的石墨化[2]。的确,TEM提供了原位分析能力的优势,这些功能可以揭示热解过程中热解碳的纳米结构。但是,聚合物薄膜样品的制备仍然是一个挑战。这项工作介绍了通过两光子聚合物化(2pp)3D打印技术的基于mems的TEM加热芯片(密集溶剂)上悬浮的聚合物薄膜结构的微结构[3]。我们还报告了原位研究的结果,用于追踪热解碳的石墨化。
本论文断言,小规模的机械测试提供了以其工程长度尺度捕获相间相互关系的结构 - 性关系所需的分辨率和多功能性。通过开发四个新型实验来探测控制复合韧性的相间特性,从而探索了这一点。首先,高分辨率的SEM DIC量化了整个热解碳(PYC)键层的显微镜弹性,在Young的模量和Poisson的比率中找到了与Pyc graphitic纹理直接相关的梯度。第二,应用自动对准的微验测试的应用实现了抗拉强度的可靠提取和SIC/PYC/SIC相间的最弱连接特性。第三,使用微柱压缩来评估11个复合相间条件,定义了一个现象学方程,以最终剪切强度作为纤维粗糙度,PYC厚度和与纤维表面正常的残留压缩应力的函数。还量化了辐射和制造引起的缺陷的影响。和第四,开发了一种新型的纤维螺纹技术,用于直接提取纤维/基质之间的环状降解。在四个条件下进行测试表明,摩擦依赖于高达1000个周期的粘合剂和磨料机制。在底面的事后表征揭示了PYC结构的无定形过渡的结晶。
ATLLAS 高速飞行轻型先进材料的气动和热载荷相互作用 ATLLAS II 轻型先进结构上的气动热力学载荷 II BLOX4 第四激光氧化分析设备 C/C-SiC 碳纤维增强碳化硅复合材料 CMC 陶瓷基复合材料 CTE 热膨胀系数(以 10 -6 °C -1 为单位) CVI 化学气相渗透 DGA 军备总局 DLR 德国空气和空间飞行中心 EDM 电火花加工 EDS 能量色散光谱 ESA-ESTEC 欧洲空间局 - 欧洲空间研究与技术中心 FAST 场辅助烧结技术 HP 热压 PCS 聚碳硅烷(SiC 前体) PIP 前体渗透和热解 PyC 热解碳 RMI 反应熔融渗透 SEM 扫描电子显微镜 SI 浆料渗透 SIP 浆料渗透和热解 SPS 放电等离子烧结 TT 热处理 UHTC 超高温陶瓷 UHTCMC 超高温陶瓷基复合材料 WC 碳化钨 ρ 密度(单位:g/cm 3 ) σ f 弯曲强度(单位:MPa) ε f 弯曲应变(单位:%) d 50 中值粒度(单位:µm) E 杨氏模量(单位:GPa) E f 弯曲模量(单位:GPa) K 1C 断裂韧性(单位:MPa.m 1/2 ) H v 硬度(单位:GPa)
心血管疾病的发病率在世界范围内不断上升。器官芯片和人类多能干细胞 (hPSC) 技术有助于克服心脏体外模型中的一些局限性。本文介绍了一种双室单片心脏芯片装置,该装置可在单个制造步骤中实现多孔膜集成。此外,该装置包括开放式隔间,可轻松将 hPSC 衍生的心肌细胞和人成体心脏成纤维细胞共培养成几何定义的心脏微组织。该装置可以用玻璃密封或带有完全定制的 3D 打印热解碳电极的盖子可逆地关闭,从而可以对心脏微组织进行电刺激。下方的微流体通道允许对心脏微组织进行局部和动态药物给药,如对异丙肾上腺素的变时性反应所示。此外,微流体通道还可以填充人类诱导多能干细胞衍生的内皮细胞,从而允许在一个装置中共培养异型心脏细胞。总体而言,这项研究展示了一种新型心脏芯片模型,该系统将开放式顶部装置与 3D 打印碳电极系统地集成在一起,用于电起搏和心脏组织培养,同时实现主动灌注和动态药物给药。人类心脏芯片模型工程方面的进步代表着将器官芯片技术作为临床前心脏药物开发的常规方面迈出了重要一步。
高温燃料的快速发展对于部署核热推进(NTP)系统至关重要。NTP使用核反应堆将流动的氢气流到> 2000 K,提供了高脉冲推进,大约是化学火箭的能力的两倍。但是,两种由美国平民舰队运营的燃料形式,而历史方法的其他燃料与当前的绩效和运营安全要求不相容。一种称为Tristructral各向同性(TRISO)的替代燃料形式可以满足这些要求。Triso颗粒每个都包含一个可裂变的微球(例如uo 2),由热解碳(PYC),SIC和PYC三重涂层。相应的PYC和SIC“壳”为每个制造的Triso颗粒(〜1 mm)提供裂变产物(FP)遏制系统和压力容器。具体而言,已证明了辐照的Triso颗粒中的FP遏制(1,2),代表了“基于材料的”工程控制,以实现操作安全性。从2011年开始,Triso颗粒的合并是通过在烧结的SIC矩阵中随机堆积进行的。SIC矩阵有效地替换了HTGR中发现的典型石墨。SIC表现出次要的FP障碍,以及其他不同的燃料效果。SIC被氧化物添加剂烧结(3)。使用这种类型的方法,也称为纳米浸润瞬态共晶(nite)SIC,在没有损坏Triso颗粒的情况下进行整合。通常,需要低温和施加压力(约1850°C,20 MPa)以防止Triso损坏。这种方法类似于仔细的基质巩固,以防止复合烧结中的纤维损坏。Nite SIC是已知辐射稳定的少数SIC材料之一。(4)此外,使用脉冲电流烧结(PECS)轴承轴轴轴承堆叠的TRISO颗粒阵列验证了零破裂FCM燃料的工业可行性方法。最近,在2000K的热氢条件下,Benensky等人(5)在2000K的热氢条件下进行了氢测试,显示出相对较高的质量损失动力学和氧化物晶界边界相的浸出。目前尚不清楚Nite SIC的其他变体是否具有相同的局限性。其他碳化物(例如ZRC)的稳定性通过数量级和2000k以上的稳定性提高。
1.) 经食管内镜胃成形术(胃折叠术、经口无切口胃底折叠术 [TIF])是一种门诊手术。在此过程中,胃底被折叠,然后用设备部署的钉书钉或紧固件固定到位。内窥镜手术旨在重建瓣膜和反流屏障。2.) 射频能量已用于在胃食管连接处产生粘膜下热损伤。(该技术被称为 Stretta 手术。)具体而言,射频能量通过插入食管壁鳞柱交界处上方和下方多个位置的 4 个电极施加。作用机制尚不清楚,但可能与负责括约肌松弛的神经通路消融有关,或可能引起与热诱导胶原收缩和纤维化相关的组织紧缩效应。 3.) 还研究了通过粘膜下注射或植入假体或填充剂来增加下食管括约肌的体积。已经对一种填充剂——热解碳涂层氧化锆球 (Durasphere) 进行了评估。Gatekeeper™ 反流修复系统 (Medtronic) 采用由聚丙烯腈基水凝胶制成的柔软、柔韧、可膨胀的假体。假体植入食管粘膜下层,随着时间的推移,假体吸收水分并膨胀,在植入区域形成体积。然而,唯一确定的 RCT 因缺乏疗效而提前终止,并由制造商自愿撤回。还研究了将聚甲基丙烯酸甲酯珠子植入下食管皱褶的内镜粘膜下层。监管状态 EsophyX® (EndoGastric Solutions) 是一种 TIF 设备,于 2007 年获得 510(k) 营销许可,可用于全层折叠术。2016 年,带有 SerosaFuse 紧固件的 EsophyX® Z 设备通过 510(k) 流程获得 FDA 营销许可 (K160960),可用于经口组织对合、全层折叠术、胃肠道结扎、缩小胃食管连接处以及减少有症状的慢性胃食管反流病 (GERD) 患者 2 厘米或以下的食管裂孔疝。2017 年 6 月,EsophyX2 HD 和带有 SerosaFuse 紧固件和配件的第三代 EsophyX Z 设备通过 510(k) 获得 FDA 营销许可