叠加效益 热电池的另一个关键效益是它们能够以热能和电能的形式输出能量。它们能够输出热量(除了电能,符合招标草案的要求),从而提供关键的脱碳和纳税人服务,包括 (a) 仅使用间歇性可再生或电网电力对工业设施的 24/7 工艺热负荷进行脱碳,(b) 充当完全灵活的负荷,可以快速增加或减少以帮助平衡电网,包括在高峰需求时使用零能耗,(c) 通过取代现场化石燃料燃烧减少或消除工业设施的局部空气污染,使周围环境受益(通常
压力控制方法与加热模式更相关。加热时室外空气温度的变化比冷却时更大。在温暖的天气下,定速压缩机的容量输出过高,而在寒冷的环境中,容量输出过低。可变压缩机和压力控制算法可以解决这个问题。在低温环境下,系统在低吸入压力和排气压力下运行。微控制器增加压缩机调制,加热容量也根据热负荷增加。在温暖的环境下,调制较低,从而节省能源。加热模式下的排气压力控制无论环境温度如何都能提供“恒定的加热容量”,同时还能节省能源。
尽管软 X 射线区域与新兴能源转换技术息息相关,但由于 X 射线光学基础问题,该区域很少得到利用。相比之下,软 X 射线和硬 X 射线区域则广泛应用于基于光栅[1,2]或晶体[3]单色仪的同步辐射装置,以便为光谱学或显微镜学提供高光子通量和高能量分辨率的光子束。[4–6] 传统的单层涂层平面光栅单色仪(PGM)在软 X 射线范围内效率相对较低,并且由于入射光子束的掠射角非常小,杂散光不可忽略。基于晶体的单色仪在几乎垂直入射条件下的软 X 射线区域工作,这会导致热负荷和热不稳定性。
发电机类型 全碳 混合 全电动 电力份额 % 0 30 100 总额定功率 kW 8,720 8,720 8,720 燃气燃烧器额定功率 kW 8,720 6,100 0 电气元件额定功率 kW 0 2,620 8,720 环境空气流速 kg/h 63,300 63,300 63,300 运行温度 °C 550 550 550 喷雾干燥粉末产量 (*) kg/h 21,200 21,200 21,200 总用电量 kW 7,850 7,850 7,850 热负荷系数 % 90 90 90 燃气燃烧器用电量 kW 7,850 5,230 0 CO 2 排放量 (**) t/年11,460 7,630 0 (*)泥浆含水量为 34%,粉末输出含水量为 6% (**)每年运行时间为 7,000 小时
尽管软 X 射线区域与新兴能源转换技术息息相关,但由于 X 射线光学基础问题,该区域很少得到利用。相比之下,软 X 射线和硬 X 射线区域则广泛应用于基于光栅[1,2]或晶体[3]单色仪的同步辐射装置,以便为光谱学或显微镜学提供高光子通量和高能量分辨率的光子束。[4–6] 传统的单层涂层平面光栅单色仪(PGM)在软 X 射线范围内效率相对较低,并且由于入射光子束的掠射角非常小,杂散光不可忽略。基于晶体的单色仪在几乎垂直入射条件下的软 X 射线区域工作,这会导致热负荷和热不稳定性。
分离工艺涉及从乏核燃料或后处理产生的高放射性废物中分离锕系元素(包括次锕系元素),目的是在快堆或加速器驱动系统中燃烧它们。次锕系元素的回收可以高效利用资源,减少废物的体积、热负荷和放射性毒性。分离工艺对于增加和维持核能增长的重要性已为全世界所认识。因此,正在开发先进的分离工艺以分离钚和次锕系元素,目的是将它们主要在快堆中燃烧,以降低乏核燃料的长期放射性毒性。本出版物回顾了各成员国处理乏核燃料的火工工艺的发展现状和趋势,并确定了进一步发展的领域。
对于许多小型应用,如微电子元件、微型传感器和微系统,高容量冷却选项仍然有限。NASA 格伦研究中心目前正在开发一种微机电系统 (MEMS) 来满足这一需求。它使用热力学循环直接为热负荷表面提供冷却或加热。该设备可以严格在冷却模式下使用,也可以在几毫秒内切换冷却和加热模式,以实现精确的温度控制。制造和组装是通过半导体加工行业常用的湿法蚀刻和晶圆键合技术完成的。MEMS 冷却器的优点包括可扩展到几分之一毫米、模块化以提高容量和分级到低温、简单的接口和有限的故障模式,以及最小的诱导振动。
Albert Schweitzer,Fineline 2021 年 11 月 albert.schweitzer@fineline-global.com 电子产品的发展特点是组件的功率密度稳步增加。因此,由于热损失增加,组件和组件在运行过程中的热负荷问题变得越来越重要,应在规划和设计阶段尽早考虑。系统可靠性的提高与高效的 PCB 热管理直接相关。 1. 概述 多年来,电子产品的发展特点是主动元件的功率密度不断增加。ITRS 委员会的以下图表(“国际半导体技术路线图”)可以很好地显示这一发展。下面的两个图表显示了到 2025 年晶体管密度的发展(图 1)和半导体器件结构不断减小(图 2)。 ITRS:ITRS:(国际半导体技术路线图):(国际半导体技术路线图):
几十年来,晶界工程已被证明是调整金属材料机械性能的最有效方法之一,尽管由于晶粒尺寸在受到热负荷时迅速增加(晶体边界的热稳定性低),可实现的微观结构的细度和类型受到限制。在这里,我们部署了一种独特的化学边界工程 (CBE) 方法,增加了可用合金设计策略的多样性,这使我们能够创建一种即使在高温加热后也具有超细分级异质微观结构的材料。当应用于碳含量仅为 0.2 重量%的普通钢时,这种方法可产生超过 2.0 GPa 的极限强度水平,同时具有良好的延展性(>20%)。虽然这里展示的是普通碳钢,但 CBE 设计方法原则上也适用于其他合金。