随着后段制程 (BEOL) 互连尺寸的不断减小,RC 延迟已成为导致整体性能下降的主要原因 [1-2]。为了降低互连的电阻率和电容,人们采用了各种策略,例如优化制造工艺 [3-4]、修改导线的几何形状 [2] 以及利用低 k 电介质等新材料 [5-6]。然而,这些修改虽然可以通过芯片缩小尺寸来提高性能,但往往会以牺牲可靠性为代价 [7-9]。因此,对互连可靠性的广泛研究提供了有价值的评估和建议,以便在较长的使用寿命内保持性能。考虑到金属可靠性,由电子风驱动的电迁移 (EM) [10-11] 和由应力梯度驱动的应力诱导空洞 (SIV) [12] 研究了扩散主导的故障机制。对于电介质,由于金属间距最小化和介电性能较弱而产生的高电场使时间相关电介质击穿 (TDDB) 在最近的研究中也很重要 [13]。
摘要 — 迁移引起的金属互连性能下降日益威胁着集成电路的可靠性。迁移导致的故障风险不仅在每个新技术节点中都在上升,而且还制约着互连结构的小型化。除了直流线路(例如供电网络)、信号和时钟线路也日益因迁移而性能下降。本文总结了我们目前在避免迁移引起的集成电路故障方面的知识。在介绍和讨论迁移机制之后,我们将重点关注日益增长的电迁移敏感性和热迁移日益增加的影响。展望未来,我们将回顾将迁移约束和缓解措施纳入布局综合的新型 IC 设计策略。索引术语 — 电迁移、应力迁移、热迁移、可靠性、物理设计、迁移稳健性
基于 SMO 薄膜的电导式气体传感器必须加热到高达 550 ◦ C 的温度,才能在 SMO 薄膜表面启动分子吸附过程。通常使用铂作为微加热器材料。这些设备的长期可靠性主要与微机电系统 (MEMS) 结构的机械稳定性有关,该结构用于将微加热器悬浮并与其他集成组件(例如模拟和数字电路)热隔离。然而,先前的研究表明,电迁移和热迁移现象可能会加剧铂微加热器中的应力积累并导致其最终失效。在本文中,我们提出了一种方法来量化空位传输对电迁移和热迁移现象下两种新型微加热器设计中应力积累的影响。第一个设计旨在提高温度均匀性,第二个设计旨在微加热器阵列操作,利用高温度梯度同时在不同的传感器位置提供多个温度。我们的分析表明,热迁移力远高于电迁移力,这意味着这些器件中的高热梯度对空位传输的贡献远大于电子风引起的原子传输。此外,我们计算出,在典型操作条件下,我们提出的设计具有很强的抗空位迁移失效能力,平均失效时间约为 10 15 秒。