美国社区调查(ACS)是一项全国代表性的调查,其中包含有关美国人口特征的数据。该样品是从所有县和县等效物中选择的,样本量每年约为350万个住房。它是有关我们国家及其社区的详细人口和住房数据的最佳来源。我们使用个人和家庭水平的ACS数据来确定个人社会脆弱性组成部分的人口估计。美国住房调查(AHS)由住房和城市发展部(HUD)赞助,由美国人口普查局进行。调查是美国最全面的国家住房调查。使用来自2021 AHS的数据,我们创建了一个机器学习模型,该模型确定ACS中的家庭是否可能缺乏空调单元。其他数据也被用作建模过程中的预测指标。“建模家庭可能缺乏空调”部分,更详细地说明了数据和我们的机器学习方法。我们还使用人口估计计划(PEP)的辅助数据,该计划是普查局的计划,该计划生产并发布了美国和波多黎各的地理实体中居住时间的人口的估计。我们使用PEP的人口数据,按年龄组,种族和种族以及性别。一旦将加权估计值制成表格,小面积建模技术将用于创建CRE估计。由于PEP数据没有达到人口普查水平,因此CRE还使用了公法94-171摘要文件(PL94)和人口统计外壳特征(DHC)表(DHC)表格(DHC)表(DHC)表(DHC)表格,从2020年人口普查中产生基本估计。
作者和审稿人朱莉·阿里吉(Julie Arrighi),红十字红色新月气候中心;美国红十字会的全球灾难准备中心;特威特大学;世界天气归因Friederike E. L Otto,世界天气归因;格兰瑟姆研究所 - 气候变化与环境,伦敦帝国学院卡罗来纳州佩雷拉·马吉丹(Pereira Marghidan),红十字红色新月气候中心;荷兰皇家气象学院(KNMI);荷兰皇家气象学院(KNMI)的Twente Sjoukje Philip大学;世界天气归因鲁普·辛格(Roop Singh),红十字会红色新月气候中心;世界天气归因Maja Vahlberg,红十字红色新月气候中心;世界天气归因约瑟夫·吉吉尔(Joseph Giguere),气候中央安德鲁·J·潘兴(Andrew J.
量子测量最终是一个物理过程,这是由于测量系统与测量设备之间的相互作用所致。考虑在热力学环境中测量的物理过程自然提出了以下问题:如何解释工作和热量?在本文中,我们为可观察到的任意离散的测量方案的测量过程建模。在这里,要测量的系统首先与设备耦合,随后相对于可观察到的指针,因此对化合物系统进行对象,从而产生确定的测量结果。因此,由于单一耦合,该工作可以解释为复合系统内部能量的变化。通过热力学的第一定律,热量是由于指针对象的后续内部能量的随后变化。我们认为,只有当指针可观察到与哈密顿量的通勤情况并表明这种交换性意味着热量的不确定性一定是经典的,该设备才是测量结果的稳定记录。
为了以统一的方式管理空调热系统,电池热系统和电动机热系统,作者提出了一个自动开启的电动集成的热管理系统,用于电动汽车以恢复蝙蝠泰瑞的能源。首先,引入了电动汽车开发的问题以及热管理系统的重要性,其次,分析了自动驱动的热管理系统方案,并分析了每个部分的原理,还引入了触时差差的热系统的实验结果。实验结果表明:在双重蒸发系统下,压缩机速度为4500 rpm时,最大COP为2.46,最大COP充电为1180 g,最大热传递Ca Pactical ca Patiacity为4819 W(风侧热传热 +水侧热传热),蒸发温度为5.35 ous 5.35 outs cultept culteption is evapeporation is evapeporation is evapeporation sement is evapeporation us evapore pertimation 39.过冷度为10.4℃,吸气压力为280 kPa,排气压为1694 kPa。总而言之,热管理系统具有极大的节能效果,这确保在冬季供暖条件下不会大大减弱电动汽车范围,并满足舒适性的要求。关键词:热泵,电动汽车,热管理
近年来,人们对使用金属纳米结构来控制纳米级的温度越来越感兴趣。在其等离子共振下照明下,金属纳米颗粒具有增强的光吸收,将其变成理想的纳米源热源,可通过光远程控制。这个简单的方案是基于纳米科学社区中众多积极的研究活动和应用。在这里,我们回顾了这种热量等法的所谓领域的最新进展。我们首先描述了在连续或脉冲照明下的金属纳米颗粒中热产生的物理学。然后,我们提出了已经开发出来的实验和理论方法,这些方法是为了进一步理解和设计纳米级的等离子辅助加热过程。最后,我们回顾了一些基于金纳米颗粒产生的热量,即光热癌疗法,纳米疗法,药物输送,光热成像,蛋白质跟踪,光声成像,纳米化学化学和光化合物。
目前工作的起点相应地形成了市政折旧问题,即战略性热基础设施取向是否应基于中央或分散的热供应,以便连续替代化石可以通过气候中性的热能能源成功取得成功。在这种情况下,首先进行了与扫描相关的建模,一方面,该建模计算了巴伐利亚州的可再生生成植物的可再生范围,并决定了不同热源的发育潜力的存在。为了说明建模结果,随后在图案上显示了以比例覆盖水平的形式进行市政热量需求的特定可能性。此外,还对可能的可再生热源进行了对最重要的影响因素的潜在分析,因此,对中央或去中心化的热供应进行了评估的热源特异性适用性。
热量,这是建筑物性能中的关键元素,可作为室内热缓冲液。文献强调了其优势,但气候变化的持久质量影响仍然不确定。这项研究有条不紊地评估了当代和未来气候的21个伊朗城市的热质量影响,并将重量级和轻量级的结构置。EPSAP算法是一种生成建筑物设计方法,创建了一个两层楼单户住宅的数据集。在EnergyPlus中评估了冷却和加热需求,这是当前和将来的系统设计效率。使用EC-EARTH3模型估算的SSP5-8.5方案和2080个时间表模拟未来的气候。调查结果表明,重量级高于轻量级建筑的能源效率优势将减少高达0.60kWÅH·m -2
1 Well Living 实验室,Delos Living LLC,美国明尼苏达州罗切斯特,2 气候适应型城市实验室,新南威尔士大学建筑环境学院,澳大利亚新南威尔士州肯辛顿,3 新加坡国立大学设计与工程学院建筑环境系建筑与城市数据科学实验室,新加坡,4 CHAOS 实验室,普林斯顿大学建筑学院和安德林格能源与环境中心,美国新泽西州普林斯顿,5 人类潜能转化研究项目,新加坡国立大学杨潞龄医学院,新加坡,6 人性化建筑环境实验室,洛桑联邦理工学院建筑、土木与环境工程学院,瑞士洛桑
摘要:食品行业的许多过程中都涉及热量:干燥,溶解,离心,提取,清洁,洗涤和冷却。热量产生几乎包括所有过程。本评论首先提出了两个代表性的案例研究,以确定哪些过程依赖于主要的能源消耗和温室气体(GHG)排放。通过对制冷,热量产生,废热回收和热能储存中采用的技术的彻底审查来探索节能和脱碳潜在的解决方案。收集了工厂的信息,以在实际条件下显示其性能。在制冷部门中,天然流体替代了高-GWP(全球变暖电位)制冷剂,以降低温室气体的排放。是最伟大的消费者,使用热量成本(LCOH)比较了热产生技术。该分析表明,吸收热变压器和高温热泵是经济和脱碳的观点最有趣的技术,而废热恢复技术则是最短的投资回收期。在所有部门中,组件,存储技术,多代系统,智能行业的概念以及可再生能源的渗透的能源效率提高似乎是有价值的途径。
3.1热能生物能生物活物生物的天然来源燃烧体内的食物(化学能),以产生人体热量(热能)。堆积者是热能的另一个来源。分解器分解食物,随着这些化学变化的发生,产生了热能,这反过来有助于加快分解过程。(环境影响:废物管理)化学能化学能在木材或燃烧时可以转化为热能。(环境影响:由这些化石燃料燃烧引起的污染)地热能火山,温泉和间歇泉是地热能的来源 - 地球内部的能量。这些事件的热能可以产生热水或蒸汽,然后可以将其管道输送到表面的发电厂。这可用于运行产生电能的涡轮机。HRD(热,干岩)可用作产生热能的另一种技术。(将水泵入地壳中的裂缝中。它以蒸汽的形式返回表面,可用于发电。(环境影响:更广泛地使用这种清洁和环保的技术,可以减少溢油的威胁,燃烧化石燃料以及采矿化石燃料的废物造成的污染。)风能风能是移动空气的能量,是太阳能和对流的结果。当太阳加热空气时,温暖的空气升起并冷却。冷却器空气掉落,形成称为热词的对流电流。在全球基础上,这些对流电流构成了地球风系统。风车是涡轮机(带风扇叶片的车轮),该涡轮连接到发电机。当风车旋转时,发电机会产生电力。(环境影响:美学)机械力的机械力,这些力通常像摩擦力一样释放热能。(环境影响:电能电力是在许多方面产生的。水电大坝使用重力的力,将水拉到大坝上,将涡轮机转动到发电机上,这些涡轮是从发电机的机械能中产生电能的。也可以在燃烧化石燃料的热电动(燃料)发电站上产生电力。(环境影响:大坝地区的野生动植物失去了宝贵的栖息地,植物可能会灭亡,当被阻塞的河流溢出以为大坝建立水库时,商业企业可能会受到不利影响,可能会受到不利影响,燃烧化石燃料,燃烧的废物会影响湖泊中的湖泊中的有机体。