- 应用热量表的有效标准:EN 1434,第1-6部分;测量工具指令2014/32/eu,附件I和MI-004;以及相关的国家验证法规。- 用于选择,安装,调试,监视和维护仪器的遵守标准EN 1434第6部分,以及验证法规PTB TR K8 + K9(以及其他国家 /其他国家 /地区的任何相关国家验证法规)。- 对于组合热/冷却计,冷却寄存器没有验证。国家法规,以进行冷却测量。- 必须观察到电气安装的技术法规。- 该产品符合欧洲理事会电磁兼容性指令(EMC指令)2014/30/EU的要求。- 仪器和密封件的识别板不得删除或损坏 - 否则,该仪器的保证和批准的应用不再有效!- 为了实现仪表的测量稳定性,水质量必须满足AGFW反应FW-510的要求和文档VDI(德国工程师协会)VDI 2035。- 热量计符合所有适用的安全法规,使工厂离开了工厂。所有维护和维修工作只能由合格和授权的技术人员进行。- 带有激活无线电功能的仪器在空运上不允许使用。- 必须选择系统中的正确安装点:入口或出口流(请参阅项目3.1“象形图安装点”)。- 温度传感器电缆以及计算器和流动传感器之间的电缆不得扭结,卷起,延长或缩短。- 清洁热量计(仅在必要时)使用略微湿的布。- 为了防止损坏和污垢,在安装之前,只能直接从包装中除去热量计。- 如果在一个单元中安装了一个以上的热量计,则必须注意确保所有仪表的安装条件相同。- 数据表和应用说明中列出的所有规格和说明都必须遵守。可以在www.engelmann.de上获得更多信息。- 热量计具有锂金属仪。不要打开电池,不要将电池与水接触或暴露于80°C以上的温度。不要向他们收取或缩短它们。
CERN,欧洲粒子物理实验室,瑞士日内瓦 P.A.Aarnio 15、D. Abbaneo、V. Arbet-Engels、P. Aspell、E. Auffray、G. Bagliesi、P. Baillon、R. Barillère、D. Barney、W. Bell、G. Benefice、D. Blechschmidt 博士Bloch、M. Bosteels、J. Bourotte 16、M. Bozzo 17、S. Braibant、H. Breuker、A. Calvo、D. Campi、A. Caner、E. Cano、A. Carraro、A. Cattai 、G. Cervelli、J. Christiansen、S. Cittolin、B. Curé、C. D'Ambrosio、S. Da Mota Silva、D. Dattola、Th.de Visser、D. Delicaris、M. Della Negra、A. Desirelli、G. Dissertori、A. Elliott-Peisert、L. Feld、H. Foeth、A. Fucci、A. Furtjes、J.C. Gayde,H. Gerwig,K. Gill,W. Glessing,E. Gonzalez Romero 18 ,J.P. Grillet,J.Gutleber,J.E.Hackl,F. Hahn,R. Hammarstrom,M. Hansen,M. Hansroul,E.H.M.Heijne、A. Hervé、M. Hoch、K. Holtman、M. Huhtinen、V. Innocente、W. Jank、P. Jarron、A. Jusko、Th.Kachelhoffer、C. Kershaw、Z. Kovacs、A. Kruse、T. Ladzinski、Ch.Lasseur,J.M.Le Goff、M. Lebeau、P. Lecoq、N. Lejeune、F. Lemeilleur、M. Letheren、Ch.Luslin、B. Lofstedt、R. Loos、R. Mackenzie、R. Malina、M. Mannelli、E. Manola-Poggioli、A. Marchioro、J.M.Maugain,F. Meijers,A. Merlino,Th。Meyer、J. Mommaert、P. Nappey、T. Nyman、A. Onnela、L. Orsini、S. Paoletti、G. Passardi、D. Peach、F. Perriollat、P. Petagna、M. Pimiä、R . Pintus,B. Pirollet,A. Placci,J.P. Porte,H. Postema,J. Pothier,M.J. Price、A. Racz、E. Radermacher、S. Reynaud、R. Ribeiro、J. Roche、P. Rodrigues Simoes Moreira、L. Rolandi、D. Samyn、J.C. Santiard、R. Schmidt、B. Schmitt、
意大利 卡拉布里亚大学物理系和 I.N.F.N.,科森扎弗拉斯卡蒂 I.N.F.N. 国家实验室,弗拉斯卡蒂 热那亚大学物理系和 I.N.F.N.,热那亚 莱切大学物理系和 I.N.F.N.,莱切系米兰大学物理系I.N.F.N.,米兰 那不勒斯大学物理系 和 I.N.F.N.,那不勒斯 帕维亚大学核与理论物理系 和 I.N.F.N.,帕维亚 比萨大学物理系 和 I.N.F.N.,比萨 罗马大学物理系《La Sapienza》和《I.N.F.N.》,罗马 罗马大学物理系“Tor Vergata”和 I.N.F.N.、罗马大学物理系“Roma Tre”和 I.N.F.N.、罗马乌迪内大学物理系、乌迪内 I.N.F.N. 连接组的里雅斯特、乌迪内
n 通用 CM6G 型气体热量计用于测量和控制样品气体的热值或沃泊指数 (WI)。在该热量计中,样品气体在燃烧器中与空气一起燃烧,并使用热电偶检测燃烧器入口处燃烧废气和进料空气之间的温差。该热量计使用孔板检测样品气体和空气的流量作为压差,并将压差转换为数字信号,然后通过数字计算补偿流量变化。该方法具有极高的可靠性,因此可用于控制钢厂和石化行业中各种类型熔炉的热输入,也可用于控制城市煤气的热量。
•需要空前的喷气测量能量分辨率•主要的量热法选项:高度粒度(成像) +粒子流量算法(PFA)•PFA量热量:calice calorimetry:在此过程中探索的各种选项•专注于这次演讲:Skintillator-Sipillator-Sipillator-SIPM-SIPM ECAL PROTOTYS和NEW CRYSER ECAL ECAL ECAL ECAL ECAL ECAL ECAL ECAL ECAL
对于计量机构使用的每种热量计,都开发了自己的校准策略。虽然 LNE 的参考热量计可以通过电能进行校准,但商用热量计使用由甲烷、二氧化碳和硫化氢组成的二元和三元校准气体混合物。INM-BRML 的热量计根据 DIN 51899 进行校准,使用一种校准气体和一种质量控制气体。PTB 的热量计根据 ISO 6143 进行校准,使用四种校准气体。为了进行验证,使用了六种二元或三元类似沼气的混合物以及一种类似于煤层气的 10 组分气体。图 2 显示了测量的热值与根据 DIN EN ISO 6976 计算的热值的相对偏差及其不确定性。
目前,NPL 高能光子束中水吸收剂量的主要标准是石墨热量计。然而,辐射剂量测定中感兴趣的量是水吸收剂量。因此,NPL 正在开发一种基于水热量计的新水吸收剂量标准。热量计在 4 DC 下运行,温度控制由液体和空气冷却相结合提供。热量计的密封玻璃内胆设计旨在最大限度地减少非水材料对吸收剂量测量的影响。在 6、10 和 19 MV 光子束中进行的水吸收剂量测量与使用主要标准石墨热量计确定的测量不确定度一致。此外,使用水热量计测量的水吸收剂量与基于 6OCO γ 辐射的空气比释动能标准的测量不确定度一致。水热量计的开发将导致 NPL 的剂量测定系统非常强大,其中可以使用三种独立技术确定水吸收剂量。
对于计量机构使用的每个热量计,都开发了自己的校准策略。虽然 LNE 的参考热量计可以通过电能进行校准,但商用热量计使用由甲烷、二氧化碳和硫化氢组成的二元和三元校准气体混合物。INM-BRML 的热量计根据 DIN 51899 进行校准,使用一种校准气体和一种质量控制气体。PTB 的热量计根据 ISO 6143 进行校准,使用四种校准气体。为了进行验证,使用了六种二元或三元类似沼气的混合物以及一种类似于煤层气的 10 组分气体。图 2 显示了测量的热值与根据 DIN EN ISO 6976 计算的热值的相对偏差及其不确定性。
摘要。生成模型,尤其是生成对抗网络(GAN),正在作为蒙特卡洛模拟的可能替代方法。已经提出,在某些情况下,可以使用量子gan(qgans)加速使用gan的模拟。我们提出了QGAN的新设计,即双参数量子电路(PQC)GAN,该设计由一个经典的歧视器和两个采用PQC形式的量子代理组成。第一个PQC在n -pixel图像上学习了一个概率分布,而第二个PQC则为每个PQC输入生成了单个图像的归一化像素强度。为了了解HEP应用程序,我们评估了模仿热量计输出的任务的双PQC体系结构,转化为像素化图像。结果表明,该模型可以复制尺寸降低及其概率分布的固定数量的图像,我们预计它应该使我们可以扩展到实际热量计输出。
仿真在解释大型强子对撞机(LHC)实验的碰撞数据以及与理论预测的测试对齐中起着至关重要的作用。在模拟碰撞数据中所带来的独特挑战,包括高维特征空间和缺乏可拖动的可能性模型,启发了一系列深度学习解决方案[1,2]。特别是,对于模拟检测器中的粒子相互作用,核心挑战是有限的计算资源,以对热量计中的粒子阵雨建模所需的极端细节主导。在这里,基于Geant 4 [3 - 5]的蒙特卡洛模拟的传统方法是强大但资源高度的 - 占据了地图集模拟链中最大的时间[6]。在未来的高光度LHC运行中,热量计模拟将需要应对更高的数据速率,从而可能成为物理分析的限制因素,而在该领域没有显着进展[7]。为了大大加快热量计模拟的速度,已经采取了许多努力。虽然快速的淋浴模型已成功部署在LHC实验[8,9]中,但准确性却有限。最近,深层生成模型的出现导致了它们的广泛流行和解决这项任务的潜力。应用于量热计的第一个生成模型