此预印本版的版权持有人于2025年2月10日发布。 https://doi.org/10.1101/2025.02.08.25321747 doi:medrxiv preprint
摘要 本文介绍了用人工智能系统控制的热风和红外线干燥穿心莲的开发。研究中使用的工具是人工智能系统控制的热风和红外线穿心莲干燥柜。该部件由一个宽度为 1204 毫米、长度为 380 毫米的烤箱组成。65 瓦的鼓风机用于吹风,使热量均匀地进入干燥器。热释放源使用加热线圈、翅片加热器/翅片加热器。电压大小 220 V,1000 W;长度 450 毫米;金属编织尺寸 11 毫米;翅片尺寸 31 毫米。用热电偶检查热量,并与设定温度进行比较。如果穿心莲干燥机内的温度没有下降,热像仪将打开通风风扇将热量带出室外。并命令降低加热器的温度。测量的温度数据将保存到 Raspberry Pi 服务器。研究发现,该机器能够根据机器的操作条件干燥穿心莲。并且能够按照干燥规定值在40°C的温度下干燥穿心莲。干燥前湿度为100%,干燥后湿度为0.73%。干燥前重量为30克,干燥后重量为8.1克。干燥速率为1.37,平均温度为60°C,符合干燥规定值。干燥前水分为100%,干燥后水分为0.79%。干燥前重量为60克,干燥后重量为12.6克。干燥速率为1.27。该系统还使用功率为1kW的低热源。电压为220 V。
地质能源管理部Doug Ito州石油和天然气主管715 P Street,MS 19-06(法律办公室)加利福尼亚州萨克拉曼多95814电话(916)323-6733
图1:Havior(热救主)的界面。气象小组(a)促进了对气象学的数值理解,包括时间趋势(A1),时间分布(A2)和空间分布(A3)。香港(A4)的“热文字”直观地显示了基于城市的模式以及温度和百分位数之间的相关性。新闻小组(b)在基于主题的层次结构(B1)和基于风险的语义邻近(B2)方面,支持其语义理解中的人类新闻检索和增强。新闻列表(B3)提供了带有支持性的视觉提示中检索到的新闻中的结构信息的详细信息。摘要小组(C)使专家能够检查新闻和数字城市风险模型(C1),构成上下文问题(C2)的整合,并生成风险管理报告。
连续的高温天,一种称为热浪的现象,由于原子质的气候变化而变得越来越频繁和强烈。Padua City以大量城市土壤密封为特征,特别容易受到这些变化的影响,并加剧了城市热岛影响。本研究将城市数字双胞胎技术和物联网概念集成到三维建模环境中,以开发基于自然的解决方案方案模拟工具。此工具旨在解决帕多瓦市的气候通中问题。使用传感器衍生的空气温度和相对湿度数据,我们的方法提供了详细的微气候信息,以识别帕多瓦市的耐热区域。根据此信息,选择了第一个场景开发的试点项目测试,以评估如何通过使用绿色蓝色基础设施来最好地达到冷却效果,以应对帕多瓦市的热危害。此外,这项研究探讨了在帕多瓦市计划中降低热浪期间的热效应的紧迫性。
PMVK 4,NSDHL,4 HRAS 4和KRT10。4到目前为止的疾病机制包括种系X连锁变体,镶嵌变体和种系首次击中,并以马赛克第二击中命中。配对的血液和受影响的皮肤DNA接受了深层外显子组测序(WES,平均250倍),N¼14,如果阴性为阴性,皮肤DNA经过了靶向测序板R327(Mosaic Disorsisters R327)(UK National Genomic Test Directory),N¼8。两名患者因样本限制而没有前进到下一代测序面板。在研究后期招募的两名患者首先是下一代测序小组,但没有继续进行WES。我们在这里确定ilven具有多种单基因原因,在NSDHL中发生突变(N¼2,种系,NSDHL C.613G [t,p。[G205T],C.603_604DELTG,p。[H201FS*69],no no smine,pmvk(no smine),pmvk(no),在皮肤中的同一基因中检测到的变体PMVK C.126delg,P.R42Fs,在WES上拾取),HRAS(N¼1,Mosaic,Hras C.37G [C,p。(G13R),在面板上拾取,和Card14(N¼2,Mosaic,this 2,cocaic of this 2 coped of trapered of。十名患者没有鉴定出病原变体,我们特别排除了所有先前描述的基因中的任何变体。没有对WES阴性的患者在随后的面板上鉴定出的基因,这表明尚未确定的变体不是已知的镶嵌基因,或者如果它们不太可能是
8 Connolly, D.、Hansen, K.、Drysdale, D.、Lund, H.、Van Mathiesen, B.、Werner, S. 等 (2015)。加强供暖和制冷计划以量化提高欧盟成员国能源效率的影响:将欧洲供热路线图方法论转化为成员国层面。(工作包 2。主要报告:执行摘要。)比利时布鲁塞尔:Stratego 项目。检索自 https://www.euroheat.org/wp-content/uploads/2016/04/WP2-Main-Report.pdf
摘要 Polygonum cognatum Meissn. 是一种野生可食用植物,在土耳其被称为 madimak。其嫩芽在春季栽培并用作蔬菜。本研究评估了不同干燥处理对 madimak 植物颜色属性的影响,这些植物使用两种不同的方法干燥:热风干燥和微波干燥。风干处理分别在 60、70 和 80 °C 下进行。微波干燥使用四种不同的微波功率水平进行,范围在 160 至 750 W 之间。madimak 的微波干燥比热风干燥更快。随着微波功率的提高,干燥时间大大减少。干燥过程在 0.058 到 0.308 小时之间完成,具体取决于微波功率水平,而热风干燥在 2.583 到 4.166 小时之间。微波干燥对样品颜色质量的影响不如热风干燥大。微波干燥植物的叶绿素 a、叶绿素 b 和总叶绿素含量显著保留。颜色和叶绿素属性均表明,与热风或常温干燥相比,微波干燥更适合马迪马克植物。研究发现,在 750 W 微波功率下,颜色变化最小,叶绿素含量最高。此外,80 °C 热风干燥和 160 W 微波功率水平的最低比能量需求分别为 44.58 kWh/kg 和 107.00 kWh/kg。结果表明,热风干燥温度之间的比能量需求没有显著差异,而微波功率水平之间的差异很大。关键词:Madimak、微波、热风、颜色、比能、可食用植物、叶绿素引言叶绿素是分布最广的植物色素,叶绿素 a 和 b 在食品技术中的重要性源于它们在绿色蔬菜中的作用(King 等人,2001)。叶绿素 a 和叶绿素 b 是主要形式,通常存在于常用于食用的高等植物中,它们的比例大约为 3:1。叶绿素 a 和 b 都是四吡咯酞菁氧合物的含镁衍生物。叶绿素 a 和叶绿素 b 在感知颜色和热稳定性方面也不同。叶绿素 a 呈蓝绿色,叶绿素 b 呈黄绿色(Cui 等人,2004)。它们极易在加工和储存过程中降解。叶绿素转化为脱镁叶绿素和其他衍生物会导致从鲜绿色变为暗橄榄绿色或橄榄黄色,最终被消费者视为品质的下降 King 等人(2001 年)和 Ahmed 等人(2001 年)。叶绿素保留对于确定热脱水绿色植物的最终质量非常重要。在较高温度和酸性条件下,叶绿素环中的中心镁被两个氢离子取代,绿色叶绿素转化为橄榄棕色脱镁叶绿素。在约 60–80 o C 的较低温度下,叶绿素酶活性增加,形成绿色叶绿素,然后叶绿素易受镁损失的影响,从而形成橄榄褐色脱镁叶绿素 (Cui 等,2004)。颜色是植物产品的重要质量属性,叶绿素已被用作绿色蔬菜的质量指标 (Guan 等,2005)。Polygonum cognatum Meissn. 是一种野生植物,在土耳其语中称为“madimak”。这种可食用植物是一种多年生细长木本植物。它生长在海拔 720-3000 米的路边、斜坡和悬崖上。春季收集带叶的嫩芽 (Yildirim 等,2003)。植物的新鲜叶子和茎可作为蔬菜食用。干燥的植物可用作药用植物 (Ozbucak 等,2007)。在土耳其民间医学中,它被用于各种目的,例如其利尿作用和治疗糖尿病(Yildirim 等人,2003 年)。脱水是最古老的食品保存方法之一,是食品加工中非常重要的一个方面。产品在干燥过程中产生的热损伤与温度成正比