肠道菌群越来越被认为是肠粘膜中血管发育和内皮细胞功能的致动变量,但也影响远程器官的微脉管系统。在小肠中,用肠道菌群定殖以及随后的先天免疫途径的激活促进了复杂的毛细血管网络和乳乳的发展,从而影响了肠道的完整性 - 血管屏障的完整性以及营养摄取。由于肝脏通过门户循环产生大部分的血液供应,因此肝微循环稳步遇到微生物元素衍生的模式和主动信号代谢物,这些代谢产物会诱导肝弦正弦内皮的组织变化,从而影响正弦的免疫分化并影响代谢过程。,此外,微生物群衍生的信号可能会影响远处器官系统(例如大脑和眼睛微血管)的脉管系统。近年来,这个肠道居民的微生物生态系统被揭示出有助于几种血管疾病表型的发展。
TEAl : 三乙基铝 ( C 2 H5 ) 3 Al TMGa : 三甲基镓 ( CH 3 ) 3 Ga TMIn : 三甲基铟 ( CH3 ) 3 In DETe : 二乙基碲 ( C 2 H5 ) 2 Te DEZn : 二乙基锌 ( C 2 H5 ) 2 Zn CP 2 Mg : 双(环戊二烯基)镁
摘要作为现代社会中通信,信息和感知的无线解决方案,电磁波(EMW)为人们日常生活质量的提高做出了巨大贡献。同时,EMWS产生电磁污染,电磁干扰(EMI)和射频(RF)信号泄漏的问题。这些情况导致对有效的EMI屏蔽材料的需求很高。要设计EMI屏蔽产品,必须在电磁屏蔽效率,屏蔽材料的厚度,耐用性,机械强度,体积和重量减小以及弹性之间实现折衷。由于其阻断EMW,柔韧性,轻质和化学电阻率的效果,石墨烯已被确定为有效的候选材料,以进行有效的EMI屏蔽。在此,我们审查了研究各种基于石墨烯的复合材料作为潜在的EMI屏蔽材料的研究,重点是基于石墨烯和银纳米线的复合材料,原因是它们的高EMI屏蔽效率,低产量和有利的机械性能。
摘要:本研究的重点是三个参数之间的相关性:(1)石墨粒径,(2)石墨与氧化剂的比率(KMNO 4),以及(3)石墨与酸(H 2 SO 4和H 3 PO 4)的比率(H 2 SO 4和H 3 PO 4),具有氧化物氧化物的性质,结构和特性(GO)。相关性是一个挑战,因为由于系统粘度的变化,这三个参数几乎无法彼此分开。石墨颗粒越大,GO的粘度越高。将石墨与KMNO 4的比率从1:4到1:6降低,通常会导致更高的氧化程度和更高的反应产率。但是,差异很小。除最小的颗粒以外,将石墨与酸 - 酸体积比从1 g/60 mL增加到1 g/80 ml,降低了氧化程度,并稍微降低了反应产率。然而,反应的产率主要取决于水的纯化程度,而不是反应条件。GO热分解的较大差异主要是由于块状粒径,而其他参数则较小。
摘要:我们通过位于平坦介电底物上的平坦石材条的无限光栅考虑了电子极化平面波的散射和吸收。为了构建一个受信任的全波无网格算法,我们将散射问题扔给了双重系列方程,并基于离散傅立叶变换的倒数来执行其分析正则化。然后,对于未知的floquet谐波振幅,该问题将减少到Fredholm 2-Kind矩阵方程。因此,由Fredholm定理保证了所得代码的收敛性。数值实验表明,这种构型是频率选择性的跨表交或一个周期性光子晶体。如果光栅周期和底物厚度是微米大小的,则这种空腔的共振频率在Terahertz范围内。在电子极化情况下不存在等离子体模式,这些共振对应于底物的低Q板模式,并因光栅的存在而略微扰动,并且整个弹药的超高Q晶格模式作为周期开放式腔。我们使用我们的全波数值代码量化了它们的效果,并为晶格模式频率和Q因子得出渐近分析表达式。
发现由于神经递质水平异常而引起的神经系统疾病被发现是长期残疾的主要原因,也是全球死亡率方面的第二个主要原因。1在印度,在2013年至2025年期间,神经系统疾病估计增加23%。2也据报道,由于最近的Covid-19大流行,认知,精神病和神经功能受到SARS-COV-2的影响。3因此,在这方面,神经递质的检测和监测是显着的。神经递质是一种化学信使,其功能与中枢神经系统直接相关,并且可以在各种生理和心理活动中。4个神经递质作为响应
