我们研究了使用分子动力学(MD)和有限元仿真的空间排除极限的密集流体通过纳米多孔膜的运输。仿真结果表明,对于简单的流体,桑普森流的偏差是滑动和有限原子尺寸效应之间竞争的结果。后者通过引入有效的孔径以及有效的膜厚度来表现出来。我们提出了一个解释所有这些因素的膜渗透性的分析模型。我们还展示了如何修改该模型以描述低分子量芳族烃在空间极限下跨这些膜的转运。通过Lennard-Jones流体渗透到单层和多层石墨烯膜的Lennard-Jones流体以及低分子量有机液体渗透到单层石墨烯膜的MD模拟进行了广泛的验证。
治疗药物的有效和特定于现场的递送仍然是癌症治疗中的一个至关重要的挑战。传统的药物纳米载体(例如抗体 - 药物缀合物)通常由于成本高而无法使用,并且可能导致严重的侧面影响,包括威胁生命的过敏反应。在这里,通过使用创新的双重印迹方法制造的超分子代理的工程来克服这些问题。开发的分子印刷纳米颗粒(纳米虫)的目标是雌激素受体Alfa(ER 𝜶)的线性表位,并用化学治疗药物阿霉素加载。这些纳米纳米具有成本效率和竞争性的ER 𝜶商业抗体的功能。在大多数乳腺癌(BCS)中过表达的材料与ER 𝜶的特定结合后,通过受体介导的内吞作用实现核药物的递送。因此,在过表达ER 𝜶的BC细胞系中引起了显着增强的细胞毒性,为BC的精确治疗铺平了道路。通过在复杂的三维(3D)癌症模型中评估其药物效应的临床使用概念概念,该模型捕获了体内肿瘤微环境的复杂性而无需动物模型。因此,这些发现突出了纳米元作为一种有希望的新型药物化合物用于癌症治疗的潜力。
ค าส าคัญ: แกรฟีน ไมโครเวฟพลำสมำ รำมำนสเปคโตรสโคปี Abstract This paper presents the synthesized graphene by using microwave plasma CVD on coper plate created from microwave oven.通过将乙醇的蒸气用作氩气中的碳源,在反应堆内成功地创建了石墨烯膜。氩气的流速变化了1、2、3、4和5升/分钟。创建的石墨烯膜以拉曼光谱法进行了特征。分别位于1345、1579和2686 cm -1左右的石墨烯,D,G和2D波段的三个主要频段,没有流速的影响。发现,在所有条件下,创建的石墨烯膜的缺陷都低。但是,当使用氩气1升/min的流速并重复5次时,创建的石墨烯具有2层。但对于其他流速,创建的石墨烯膜有多层。
政府经常从工程和地缘政治角度看待能源安全。工程学的观点与能源技术的安全和可靠运行有关,主要是通过监管来实现的。尽管这主要集中在核电站等单个工厂上,但由于低碳间歇性可再生能源的渗透率增加,现在考虑到英国,德国和澳大利亚等国家 /地区更广泛的电气三级系统的稳定性。地缘政治观点在历史上主要与资源供应安全性有关,目的是确保英国以稳定的价格获得稳定的化石燃料供应,并在某种程度上促进能源独立性和国内化石燃料储量的发展[17,18]。
激光。”激光物理字母9.1(2011):54。42。Sun,Zhipei等。“石墨烯模式锁定的超快激光器。”ACS Nano 4.2(2010):803-810。43。Lin,Jian等。 “来自商业聚合物的激光诱导的多孔石墨烯膜。” 自然Lin,Jian等。“来自商业聚合物的激光诱导的多孔石墨烯膜。”自然
近年来,由于其独特的特性以及在气体和生物传感器中的潜在应用,对磁石墨烯(MGO)的兴趣显着增加。在本评论文章中给出了MGO合成技术的广泛摘要,例如化学还原,水热合成和溶剂热合成。及其在气体和生物传感器中的许多用途,MGO的灵敏度,选择性和稳定性也被突出显示。除了可以鉴定氨,硫化氢和挥发性有机化合物的气体传感器外,MGO还可以用作鉴定蛋白质,葡萄糖,胆固醇和DNA的生物传感器。文章的结论讨论了该领域的未来方向以及在各个行业的MGO研究中的可能应用。