摘要 丙二烯氧化物合酶(AOS)是参与12-氧代植物二烯酸(OPDA)和茉莉酸生物合成的关键酶,在植物防御食草动物攻击中起重要作用。我们前期在地钱Marchantia polymorpha中鉴定了具有AOS活性的胞质型MpAOS1和叶绿体型MpAOS2。然而,尚无直接证据表明MpAOS的亚细胞定位及其通过产生OPDA对植物防御的贡献。本研究通过CRISPR/Cas9介导的基因组编辑破坏了Mp AOS1和Mp AOS2基因,生成了M. polymorpha突变体;并分析了双敲除突变体中OPDA产生的损失。在AOS突变体上,二斑叶螨(Tetranychus urticae)的存活率和产卵量相对于野生型植物有所增加。总体而言,这些发现表明,M. polymorpha 中已经建立了通过 OPDA 信号通路应对红蜘蛛的防御系统。
癌症是全球公认的主要健康危害之一,也是全球八分之一死亡病例的病因。化疗被认为是癌症的主要治疗方法,但由于其即将出现的耐药性而受到重大限制。我们的重点应该是提供有效且持久的治疗程序,而不会损害癌症患者的寿命和生活质量。对研究人员和科学家来说,对化疗药物的耐药性和设计有效的药物输送系统以克服癌症治疗失败仍然是一项具有挑战性的任务。纳米粒子 (NPs) 因其更高的生物利用度、溶解度和保留时间而被广泛用于提高治疗指数。除此之外,一些研究已经使用聚丁基氰基丙烯酸酯 (PBCA) 作为用于治疗癌症的药物输送目的的最常见载体之一。PBCA 及其共聚物在设计具有所需特性的 NPs 方面非常重要,例如生物相容性、生物降解性、较小的粒径、独特的表面特性、容易的药物释放和靶向特异性。在本文中。我们的目的是回顾和总结使用 PBCA 纳米粒子作为有效药物载体治疗不同癌症的文献。
摘要 简介 二十二碳六烯酸 (DHA) 是一种 omega-3 脂肪酸,对大脑发育很重要,并可能对神经发育结果产生影响。在双组、随机、双盲、安慰剂对照的母体补充 Omega-3 以减少极度早产儿支气管肺发育不良试验中,极度早产儿 (<29 周胎龄) 补充高剂量 DHA 或安慰剂,直至其达到月经后 36 周龄。我们建议对这些儿童进行长期的神经发育随访。该方案详细说明了 5 岁时的随访,旨在 (1) 确认我们的长期招募能力和 (2) 确定新生儿补充 DHA 后学龄前神经发育结果的范围。方法与分析 这项长期随访涉及来自魁北克五个地点的 194 名儿童,这些儿童的母亲(n=170)在他们年满 5 岁时随机分配接受 DHA(n=85)或安慰剂(n=85)。主要结果指标与长期招募能力有关,如果 75% (±10%, 95% CI) 的符合条件的儿童同意这项 5 年随访研究,则我们判定为成功。我们将对母亲进行访谈,以评估学龄前神经发育的各个方面(执行功能、行为问题、整体发展和健康相关的生活质量),并使用标准化神经发育问卷进行评估。此外,将对一部分母亲进行半结构化访谈,以确定她们的接受程度,并确定她们最终参与下一阶段试验的障碍和推动因素。这项随访研究将需要大约 22 个月才能完成。伦理与传播 本研究已获得魁北克大学拉瓦尔分校研究伦理委员会 (MP-20-2022-5926) 的批准。母亲在参与本研究前将提供知情同意书。研究结果将
在两个电极之间传输。已经对锂离子电池进行了广泛的研究,但几个关键过程,主要与它们对电极的反应性有关,但仍有几个关键过程尚待充分说明。[1]没有电解质在锂离子电池的负石墨电极上本质上是稳定的,而可逆细胞化学反应强烈依赖于固体电解质相(SEI)的形成。SEI是一个NM薄的多相复合层,通常是在锂离子电池的第一个电荷/放电周期之后从电解质的降解产物中形成的石墨。尽管几十年前已经建立了关于SEI重要性的一般性感,但其形成和操作机制仍在激烈地进行辩论。尽管如此,通常观察到SEI的性能在很大程度上取决于使用的电溶剂。可行的锂离子电池电解质上的溶剂上的必需需求是高电介质构造,低粘度,较大的液体温度间隔和与所有细胞成分接触的稳定性。[1]
本文包含的信息,包括但不限于数据,陈述和典型价值观,以真诚地给出。lg Chem不提供任何保证或保证,表示或暗示,(i)在本文中所述的结果将在结束条件下或(ii)在任何纳入LG化学材料,产品,建议或建议的设计的有效性或安全性下获得。此外,本文包含的任何信息均不得解释为具有法律约束力的一部分。尤其是,典型值应仅视为参考值,而不是结合最小值。每个用户都承担着自己确定LG Chem材料,产品,建议或建议其自身特定用途的适用性的全部责任。每个用户必须识别并执行所需的所有测试和分析,以确保其成品零件包含LG化学材料或产品将是安全且适合在最终使用条件下使用的。由于产品的质量提高,可以更改本文包含的数据。
摘要:聚甲基丙烯酸乙酯 (PEMA) 溶于乙醇,乙醇是 PEMA 的非溶剂,这是因为添加的胆汁酸生物表面活性剂石胆酸 (LA) 具有溶解能力。避免使用传统的有毒和致癌溶剂对于制造用于生物医学的复合材料非常重要。高分子量 PEMA 浓溶液的形成是使用浸涂法沉积薄膜的关键因素。PEMA 薄膜可为不锈钢提供防腐保护。制备了复合薄膜,其中包含用于生物医学应用的生物陶瓷,例如羟基磷灰石和二氧化硅。LA 促进羟基磷灰石和二氧化硅在悬浮液中的分散以进行薄膜沉积。布洛芬和四环素被用作制造复合薄膜的模型药物。使用浸涂法成功制备了 PEMA-纳米纤维素薄膜。研究了薄膜的微观结构和成分。本研究中开发的概念性新方法代表了一种多功能策略,用于制造用于生物医学和其他应用的复合材料,使用天然生物表面活性剂作为溶解剂和分散剂。
1临床微生物学系,医学技术系,关联医学科学系,泰国北北,朝安格梅大学,2Charité-Universitätsmedizin柏林柏林,柏林,柏林,德国,柏林,柏林,柏林研究所(IDRU),临床微生物学系,医学技术系,相关医学科学系,Chiang Mai大学,Chiang Mai,Chiang Mai,泰国,泰国5号,55岁生物学系,Chiang Mai大学,Chiang Mai,Chiang Mai,Chiang Mai,Chiang Mai,Thailand,Thailand,6 Mycotic and Parasitic and Mycobacteria,berlinial Servertia nisteria Instery Insterctious k.保加利亚的Stara Zagora,Trakia University,Trakia University医学院医学物理学,生物物理学和放射学
单畴(永久取向的“单晶”)液晶驱动通常是获得人造软材料类似肌肉驱动的关键方案。[1–3] 然而,由于聚合物弹性体的各向同性,这种物理上偏置的分子结构的需求给经典的合成聚合物弹性体带来了技术挑战。1991 年,Finkelmann 等人 [8] 引入了一种两阶段氢化硅烷化方法,并报道了第一个成功的具有独立驱动功能的“向列液晶单晶弹性体”。在这种方法中,其本质一直是随后二十年制造单畴液晶驱动的首选方案,对轻度交联的凝胶施加单轴机械延伸,以建立内部单轴取向场,然后进行进一步(第二阶段)固化以永久固定该取向。然而,这种方法在实践中非常困难,因为半固化凝胶本身具有机械脆弱性,需要充分拉伸才能实现取向。这降低了液晶元件在不断扩展的变形和驱动应用中的可用性。为了实现更复杂的液晶取向模式并规避分阶段固化问题,人们开发了其他基于外部场的技术,特别是表面取向 [9–12] 和动态键交换。[13–20] 基板的多样化像素定义表面使驱动模式的扩展成为可能,而不仅仅是简单的收缩-伸展。尽管进行了功能化,但材料的规模仍然受到特定基板的限制,并且表面穿透液晶元件本体的深度有限,使得该方法在技术上不足以进行大规模制造。因此,对于通用且灵活的液晶元件制造,机械拉伸仍然是生产多功能功能形式的单畴液晶元件的最简单策略。例如,鉴于聚合物纤维加工方法的成熟,这在编织纤维中尤为突出。人们希望有除氢化硅烷化之外的新化学方法,以便进行稳健的反应和方便的机械排列方式。近年来,二丙烯酸酯反应性液晶原(如 RM257 和 RM82)的商业化供应已成为 LCE 领域的强大推动力,考虑到涉及二丙烯酸酯的一系列良性反应,它提供了一种令人满意的替代方案。特别是,
(纳米域形成)。10–13然而,纳米相转变会发生,而没有Poegma在侧链之间(分支,类似乙烯类)之间表现出形成 - 和/或链内氢键形成。然而,对于更长的侧链,由于侧链关联的统治和钉子侧链的临界长度以上的晶体域的占主导地位,Poegma均聚物会失去热重音特征。在过去几年中,PEG侧链结晶的特定特征引起了人们的重大关注,有6,14个表明对这种相当独特的聚合物的形态行为的持续兴趣。由无定形主链和可结晶的侧链组成的刷子共聚物可以分离成各种形态,从而导致具有有趣特性的共聚物。5,8,15–17在过去的几十年中,已经研究了这种刷子聚合物的结晶行为,根据通常最接近的模型,主链附近的主链和一小部分侧链构成了无晶相的侧链,而侧链则被晶状体链纳入了晶状体链中,由晶状体链分为圆形的分离。5,16被广泛接受,诸如主链刚度,连接组的性质以及侧链的长度等因素会显着影响侧链结晶。5,155,18在PEG侧链的情况下,报告的结果表明,与线性长的PEG [peo(PEO氧化物),大分子分子链相比,结晶温度T C,T C,T c,降低,超冷的程度和过冷的程度很大程度上取决于侧链的长度,而t c restry the t c restr y s t c restr y Bulth y Bulty y Bul ys Bur strument y ys 1 c。已显示出刷子共聚物中的结晶受到可结晶的钉链的挫败感的阻碍,这些钉子可以以互齿或端到端形式实现。
ShieldUp® Flex 柔性亚克力板材让设计师在设计 2D 作品时拥有更大的自由度,并简化了制造流程。Lalou Roucayrol 的新型三体船 Arkema 4 就证明了这一点,其窗玻璃就采用了 ShieldUp® Flex 亚克力玻璃。这款全球首创的产品是一个很好的典范,为其进军许多其他市场奠定了基础。ShieldUp ® Flex 亚克力板材是透明柔性塑料领域的一项重大创新,可以手动弯曲,无需热成型。这项技术革命为设计 2D 曲面件或其他需要柔性材料的件节省了时间和金钱。位于法国 Lacq 研究中心的 Altuglas International 研究团队成功克服了 PMMA 的一个关键技术障碍,PMMA 此前以刚性著称。ShieldUp ® Flex 板材已变得柔性,无需添加任何增塑剂,也不会改变其性质。此外,ShieldUp ® Flex 材料具有极强的耐化学性和抗冲击性,使这一专利创新成为需要透明度、耐用性、轻质性、抗冲击性和灵活性的项目的理想解决方案。Arkema 4 的建造者 Lalou Roucayrol(该集团的新型 Multi50 级三体船)专门为船舶的玻璃窗(屋顶和驾驶舱)寻找这种前所未有的优势组合:• 在极端天气条件下具有完美的可视性和非常强的抗冲击性,以提高船长的安全性• 通过使用更薄的板材,显着减轻重量,进一步追求提高船舶性能水平的不断追求