烷基卤化物,具有卤素原子(氟,氯,溴或诱导)的化合物粘结到饱和碳原子,由于其多样性的反应性和广泛的应用,在有机化学中保持中心位置。这些化合物是有机合成中的至关重要的构件,为复杂分子的构建提供了多功能官能团。烷基卤化物的独特特性,例如它们的亲电性和离开群体的能力,使它们在各种化学转化中都可吸引。从历史上看,烷基卤化物已经通过传统方法(例如烷基化的卤代化或醇与卤代的取代反应)合成。然而,合成方法的最新进展导致开发了更高效,更可持续的途径,用于烷基卤化物制备,绿色化学原理,包括催化过程,无溶剂疾病和无溶剂经济反应,已成为烷基合成烷基烷基卤化物和微小的废物的整体成分。烷基卤化物的反应性包括各种反应,包括亲核取代,消除和自由基过程。了解这些反应的机械途径对于控制选择性和实现有机合成期望结果至关重要。最近的研究阐明了复杂的反应机制和新的新变化,扩大了烷基卤化物的合成效用。除了其合成效用之外,烷基卤化物还发现了在药物化学,材料科学和农业化学等不同领域的应用。将其掺入药物化合物中赋予了理想的特性,例如增加亲脂性或代谢稳定性。在材料科学中,烷基卤化物是合成聚合物,表面活性剂和具有量身定制特性的功能材料的前体。本综述旨在全面概述烷基卤化物的化学,涵盖其合成,反应性和应用。通过探索合成方法,机理见解和新兴应用方面的最新进展,本综述旨在阐明烷基卤化物在当代有机化学中的核心作用,并激发该动态领域中进一步的探索和创新。烷基卤化物是一类由与饱和碳原子结合的卤素原子组成的有机化合物,代表有机合成中的基本构建块,并在各个领域具有广泛的应用。烷基卤化物的化学因素由于其多种反应性模式以及其在药物化学,材料科学和工业过程中的重要性而引起了重大兴趣。合成的是,通过多种方法制备烷基卤化物,包括烷基的卤素化,醇与卤素的取代反应以及向烷烃添加卤素。合成方法的最新进展已引入了更可持续和有效的途径,以实现其合成,通常采用过渡金属催化和创新反应设计。绿色化学原理越来越多地整合到烷基卤化物的合成中,以最大程度地减少废物产生和环境影响。
per-和多氟烷基物质(PFA)对人类和野生动植物的健康构成了持续且复杂的威胁。在世界范围内,PFAS Point来源(例如军事基地)暴露了数千种野生动植物和游戏物种的种群,对人群和生态系统健康具有潜在的深远影响。但是很少有研究阐明PFA渗透到食物网的程度,尤其是在生态和TAXO上的主要和中等消费者社区。在这里,我们进行了> 2000种测定法,以测量23种哺乳动物和迁徙鸟类在美国新墨西哥州霍洛曼空军基地(AFB)中的17种PFA的组织浓度,其中废水流域湖泊形成生物多样性绿洲。PFA浓度是动物组织中报告的最多的浓度之一,高水平至少持续了三十年。在Holloman AFB采样的23种中有20种被严重污染,代表了中间营养水平和湿地到沙漠微生境,这涉及PFAS摄取的途径:摄入地表水,塞迪和土壤和土壤;觅食水生无脊椎动物和植物;并捕食鸟类或哺乳动物。haz热量的长碳链形式,全氟辛磺酸(PFO)最丰富,分别在鸟类和哺乳动物中平均肝脏浓度> 10,000 ng/g的湿重(WW),并且在1994年的标本中以高97,000 ng/g ww的速度达到高97,000 ng/g ww。全氟己烷磺酸(PFHXS)在水生鸟类和沿您的小鼠的肝脏中平均成千上万的Ng/g WW,但在高地沙漠啮齿动物物种的肝脏中,较低的数量级。piscivores和高地沙漠鸣禽相对未受污染。在对照位点,PFAS水平平均较低,组成不同。总的来说,这款沙漠绿洲的传统PFA在数十年中渗透到了当地的水生和陆地食品网,严重污染了居民和移民动物的种群,并通过游戏肉类消费和户外娱乐场地暴露人们。
虚拟筛选正在作为一种高度应用的技术出现,并作为广泛使用的搜索和识别潜在命中的方法获得了突出,与高插入率筛选相比,发现了发现新颖和有效的化合物所需的时间。最近,与单个软件对接相比,具有多个程序的模拟优越性已被解散。这项工作的目的是应用共识对接,分子力学/广义出生表面积(MM/GBSA)游离结合能量重新计算,并在最近合成的基于吡咯的内部基于吡咯的夹层 - 氢氮化物区域的内部数据集中进行体外评估,以搜索新型乙酰基烯基烯酶(ACHETYLCHOLCHOLINERTERASE)(ACHEER)(ACHEE)。使用了两个许可的软件 - 金5.3和滑行,用于虚拟筛选,并确定了几个化学治疗势命中率。此外,还提供了MM/GBSA的无结合能重计重估算以增强硅成果中的鲁棒性。前十名基于吡咯的氢氮化物hydrazones的MM/GBSA得分范围从-60.44到-70.93 kcal/mol。随后对最高排名化合物的体外评估表明,12D表现出最高的ACHE抑制活性,抑制速率为55%,浓度为10μM。此外,这种基于吡咯的ACHE抑制剂与酶的活性位点形成了稳定的复合物。与活性氨基残基Tyr72和Tyr286的相互作用表明12D位于酶的外围阴离子位点附近。此外,在使用Qikprop进行的硅ADME研究中,12D具有最佳的药代动力学特性。总而言之,这项研究通过计算和实验发现的结合确定了一种新型基于吡咯的ACHE抑制剂12D。
li cas purity(%)水(ppm)[C 2 ME] [BF 4] 143314-16-3 99.1 258 [C 3 ME] [BF 4] 244193-48-48-499.1 343 [C 4 ME] [C 4 ME] [BF 4 ME] [BF 4] 174501-6 9.8 464 [C 6 ME] 240 240 240 240 24. BF FF FF 296 [C 8 ME] [BF 4] 244193-0 99.8 238 [C 10 ME] [BF 4] 244193-4 99.8 600
二氟甲基化和二氟烷基化试剂,其中二氟甲基亚砜亚胺 10 和砜 9,11 因其在有机合成中的独特反应性而引起了广泛关注。二氟烷基亚砜亚胺和砜试剂的高度可调功能性在不同反应条件下表现出不同的反应性和选择性。Hu 等人报道,N-甲苯磺酰基-S-二氟甲基-S-苯基亚砜亚胺 [PhS(O)NTsCF 2 H] 可以在 NaH 存在下释放二氟卡宾,被 S-、N- 和 C-亲核试剂捕获(方案 1 a,左)。10a 相反,光催化使 PhS(O)NTsCF 2 H 成为二氟甲基自由基来源,用于烯烃的氧化二氟甲基化。 12 二氟甲基苯基砜 (PhSO 2 CF 2 H) 也采用了类似的活化策略,以 LHMDS 为碱进行去质子化生成亲核性 PhSO 2 CF 2 − 物质,13 而在电化学条件下则得到亲电性 PhSO 2 CF 2 自由基物质(方案 1 b)。14 然而,同时具有亚砜亚胺和砜官能团的二氟烷基化试剂的不同反应性和选择性尚未见报道(方案 1 c)。
创建AFFF RMS和土壤RMS的部分是由战略环境研发计划(SERDP)ER18-1664。DIMSPEC的创建部分由SERDP ER20-1056资助。SERDP是国防部的环境和弹性科学技术计划。缅因州(农业,保护,林业和卫生与公共服务部)有助于创建食品RMS。
弯曲杆菌的空肠和弯曲杆菌是全球细菌性胃炎的最常见原因(Chlebicz和Śliëewska,2018年)。它们是通过消费受污染的产品(尤其是肉类,主要是鸡肉,牛肉和猪肉)传播的食源性病原体。在2021年的欧洲,弯曲杆菌病占疾病的12万例(欧盟一人健康,2021年),而在美国,弯曲杆菌感染的数量估计为每年150万次疾病(Delahoy等人,2023年)。弯曲杆菌病可引起诸如腹部疼痛,发烧和腹泻等症状,这是生命极年龄的显着风险(Fernández-Cruz等,2010)。抗菌治疗,但是对常用的抗菌药物的耐药性是令人关注的。
摘要per-和多氟烷基物质(PFA)是一类有机化合物,它们因其在环境中的持久性,暴露于生物生物体及其不良健康影响而引起了全球关注。迫切需要开发分析方法,以表征各种样品矩阵中的PFA。基质辅助激光解吸/电离质谱(MALDI-MS)代表一种无色谱的MS方法,可执行基于激光的电离和对样品的原位分析。在本研究中,我们通过捕获的离子迁移率(TIMS)提出了MALDI飞行时间MS的PFAS分析,该型号基于尺寸与电荷比提供了气相分离的额外维度。MALDI矩阵组成和关键仪器参数被优化以产生不同的校准曲线范围。的校准曲线,而离子迁移率过滤启用了PFSAS的每个Trillion(PPT)范围。我们还成功地证明了使用TIMS在气相中分离出三种全氟辛磺酸(PFOS)结构异构体。我们的结果证明了利用MALDI-TOF-MS以及TIMS的新开发,用于快速,定量和敏感的PFA,铺平方法,以未来的高通量和对PFA的现场分析(例如MS成像应用)。
•流量电池欧洲建议免除荧光聚合物的限制。此外,为了确保有关荧光聚合物使用的水平竞争环境,应在豁免时对所有储能技术进行平等处理。•如果无法实现荧光聚合物的豁免,则对流量电池部门的贬损期为13。5年至关重要,从而可以进行研究,开发和长期测试。•流动电池公司,大学和研发中心正在积极探索替代解决方案。例如,某些有机流量电池完全使用无PFA的膜。但是,可以进行市场准备就绪的流量电池技术依赖于带有荧光聚合物的组件。•直接和立即禁止荧光聚合物将对欧盟产生重大的社会经济影响,并会导致创新技术公司离开欧洲市场或从流量电池技术中转移重点。没有技术进步,欧盟的雄心勃勃的气候目标将无法实现。•如果限制范围不变,则欧盟应优先分配足够的资金,用于无PFA的无PFA流量电池的研发以及当前技术的可持续性和风险概况。
吲哚部分被认为是一种独特的核心支架,可以与不同类型的基因和蛋白质结合,并且具有易于合成技术和独家化学特性。这些特征使基于吲哚的支架成为药物化学研究化学家的主要探测器。利用吲哚部分的杂交技术可以提高功效,打击耐药性并降低最终化合物的副作用。 因此,最近已经报道了许多基于吲哚和2-氧气吲哚的杂种,并进行了临床前和临床研究。 但是,除了在不久的将来开发更有效的基于吲哚的脚手座,还可以在多静脉药药物疗法中获得更多的成就,但仍有更多的研究工作对于清楚地了解癌症治疗中的癌症起源和耐药性机制至关重要。 在这项综述研究中引入的这些吲哚和基于2-氧烷基的杂种的有前途的抗增生活性背后,有四种主要机制是蛋白激酶,DNA拓扑异构酶,组蛋白脱乙酰基酶(HDAC)和tubulin聚合抑制活性。 在此,这篇综述将简要说明新合成的吲哚和2-氧气吲哚的混合动力及其多种机制,以展示其有希望的抗增生活性,这将是进一步改善药物发明和消除耐药性问题的方法的宝贵步骤。利用吲哚部分的杂交技术可以提高功效,打击耐药性并降低最终化合物的副作用。因此,最近已经报道了许多基于吲哚和2-氧气吲哚的杂种,并进行了临床前和临床研究。但是,除了在不久的将来开发更有效的基于吲哚的脚手座,还可以在多静脉药药物疗法中获得更多的成就,但仍有更多的研究工作对于清楚地了解癌症治疗中的癌症起源和耐药性机制至关重要。在这项综述研究中引入的这些吲哚和基于2-氧烷基的杂种的有前途的抗增生活性背后,有四种主要机制是蛋白激酶,DNA拓扑异构酶,组蛋白脱乙酰基酶(HDAC)和tubulin聚合抑制活性。在此,这篇综述将简要说明新合成的吲哚和2-氧气吲哚的混合动力及其多种机制,以展示其有希望的抗增生活性,这将是进一步改善药物发明和消除耐药性问题的方法的宝贵步骤。