水7732-18-5泡沫(S)C6-10-烷基聚氧硫酸盐硫酸盐68037-05-8二乙二醇单丁基单丁基112-34-5聚(Oxy-1,2-乙基) 63428-86-4碳硫酸铵37475-88-0磺酸,C14-16-烷烃羟基和C14-16-烷烯,钠盐68439-57-6 151-21-3α烯丙基磺酸盐68439-57-6 DEDOAMER疏水二氧化硅67762-90-7蒸馏(石油)氢化光核糖64742-53-53-53-5磷酸盐7778-53-2碱基合成油馏出(石油),氢化光64742-47-8硫酸盐硫酸盐7727-43-7硅,石英14808-60-7
这份临时报告是一项正在进行的工作,尚未详尽的报告,是第一次综合尝试解决有关主要塑料聚合物(PPP)生产行业获得的补贴水平的重大信息差距。该报告专门研究了通过原始塑料材料的加工(例如蒸汽破裂,烷烃从原始天然气中隔离)的生产阶段 - 直接通过生产碱性树脂的生产以及塑料颗粒的复合和挤出。该行业的这一部分在地理上集中并以少数非常大的企业为主导,其中一些是国有的。的补贴肯定是该细分市场的上游和下游提供的,但超出了这项研究的范围。
摘要本文探讨了可生物降解塑料在促进可持续包装实践中的作用。它讨论了可生物降解的塑料的类型,包括基于淀粉的塑料,聚乳酸(PLA)和多羟基烷烃(PHA),以及它们在减少环境污染中的潜在应用。本文还解决了与可生物降解的塑料相关的优势和挑战,并强调了它们在减少废物和可持续性中的作用。通过研究生物降解的生物降解过程,可生物降解的塑料的未来前景,该论文突出了它们在实现更可持续的包装行业方面的重要性。关键词:可生物降解的塑料,可持续包装,基于淀粉的塑料,聚乳酸(PLA),多羟基烷酸酯(PHA)。
Research interests: Main scientific interests are biodegradable and functional polymers, novel initiators and mechanisms of anionic polymerization related to the synthesis of biodegradable polymers possessing desired architecture, biodegradation of synthetic and natural polymers as well as novel mass spectrometry techniques for analysis of biodegradable polymers at the molecular level.当前的研究涉及生物相容性共聚物的结构研究以及对自然多羟基烷烃的合成类似物的控制生物降解性的混合物,以及与“制成的”结构和特性的新型聚合物材料的共聚反应,以及具有多种催化剂(包括金属自由培训)的材料(包括金属的启动器)以及供应商以及效率。
Daoud,L。和Ali,M。B. (2020)。 卤素微生物:在生物技术和环境中具有重要应用的有趣的极端细胞。 在极端粒子的生理和生物技术方面(pp。) 51-64)。 学术出版社。 Kumar,V。和Tiwari,S。K.(2019)。 卤素古细菌及其应用之间的卤素多样性。 生态系统可持续性和生物技术应用中的微生物多样性:第1卷。 在正常和极端环境中的微生物多样性,497-532。 li,J.,Gao,Y.,Dong,H。,&Sheng,G。P.(2022)。 haloarchaea,从高盐水废水中去除污染物的出色候选者。 生物技术的趋势,40(2),226-239。 Obruča,S.,Dvo树克,P.,Sedláček,P.,Koller,M.,Sedlá树 多羟基烷烃通过卤素和热肥料的合成:朝着微生物生物塑料的可持续产生。 生物技术进步,107906。 Corral,P.,Amoozegar,M。A.和Ventosa,A。 (2019)。 卤素及其生物分子:生物医学中的最新进展和未来应用。 海洋药物,18(1),33。 Anshuman,K。P.(2023)。 卤素及其用于盐水废水处理的生物膜。 当前的生命科学研究,6。Daoud,L。和Ali,M。B.(2020)。卤素微生物:在生物技术和环境中具有重要应用的有趣的极端细胞。在极端粒子的生理和生物技术方面(pp。51-64)。学术出版社。Kumar,V。和Tiwari,S。K.(2019)。 卤素古细菌及其应用之间的卤素多样性。 生态系统可持续性和生物技术应用中的微生物多样性:第1卷。 在正常和极端环境中的微生物多样性,497-532。 li,J.,Gao,Y.,Dong,H。,&Sheng,G。P.(2022)。 haloarchaea,从高盐水废水中去除污染物的出色候选者。 生物技术的趋势,40(2),226-239。 Obruča,S.,Dvo树克,P.,Sedláček,P.,Koller,M.,Sedlá树 多羟基烷烃通过卤素和热肥料的合成:朝着微生物生物塑料的可持续产生。 生物技术进步,107906。 Corral,P.,Amoozegar,M。A.和Ventosa,A。 (2019)。 卤素及其生物分子:生物医学中的最新进展和未来应用。 海洋药物,18(1),33。 Anshuman,K。P.(2023)。 卤素及其用于盐水废水处理的生物膜。 当前的生命科学研究,6。Kumar,V。和Tiwari,S。K.(2019)。卤素古细菌及其应用之间的卤素多样性。生态系统可持续性和生物技术应用中的微生物多样性:第1卷。在正常和极端环境中的微生物多样性,497-532。li,J.,Gao,Y.,Dong,H。,&Sheng,G。P.(2022)。haloarchaea,从高盐水废水中去除污染物的出色候选者。生物技术的趋势,40(2),226-239。Obruča,S.,Dvo树克,P.,Sedláček,P.,Koller,M.,Sedlá树 多羟基烷烃通过卤素和热肥料的合成:朝着微生物生物塑料的可持续产生。 生物技术进步,107906。 Corral,P.,Amoozegar,M。A.和Ventosa,A。 (2019)。 卤素及其生物分子:生物医学中的最新进展和未来应用。 海洋药物,18(1),33。 Anshuman,K。P.(2023)。 卤素及其用于盐水废水处理的生物膜。 当前的生命科学研究,6。Obruča,S.,Dvo树克,P.,Sedláček,P.,Koller,M.,Sedlá树多羟基烷烃通过卤素和热肥料的合成:朝着微生物生物塑料的可持续产生。生物技术进步,107906。Corral,P.,Amoozegar,M。A.和Ventosa,A。(2019)。卤素及其生物分子:生物医学中的最新进展和未来应用。海洋药物,18(1),33。Anshuman,K。P.(2023)。卤素及其用于盐水废水处理的生物膜。当前的生命科学研究,6。
您将在实验室中学习如何安全处理和使用有机化学品。这将包括正确使用化学通风橱和个人防护设备。您将识别常见有机官能团(烷烃、烯烃、炔烃、烷基卤化物、醇、醚和胺)的化学性质,并测试这些物质的化学反应性。还将使用分子模型探索有机分子中的立体化学和手性概念。将遵循单步合成方案,并探索常见的合成有机技术。这些技术将包括液-液萃取、基于蒸馏、过滤和色谱的分离,以及通过熔点测定、红外光谱和色谱技术对有机分子进行简单表征。学分:3.0 先决条件:无 共同要求:化学 150 同等课程:无
烷烃:术语,双键(乙烯)的结构,几何异构主义,制备方法,物理性质,化学反应 - 添加氢。卤素,水,氢化氢(Markownikov的添加和过氧化物效应)。臭氧溶解,氧化,亲电的机理。Alkynes: Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of hydrogen, halogens, hydrogen halides and water, Aromatic hydrocarbons introduction, IUPAC nomenclature, Benzene resonance, aromaticity, chemical properties, mechanism of electrophilic substitution-nitration, sulphonation, halogenations弗里德尔·克拉特(Friedel Craft)的烷基化和酰化,官能团在单声道中取代苯的指令。
先天性心脏病通常会导致发育延迟并影响整个人的神经发育。因此,至关重要的是分析心脏缺陷对儿童发育中的大脑的影响。鉴于印度中部的先天性心脏病(CHD)儿童发育状况的研究很少,我们试图评估和比较患有不同先天性心脏疾病的患者的神经发育延迟的患病率。我们研究的目标首先是利用丹佛发育筛查测试2(DDST-2)评估CHD儿童的神经发育状况;其次,比较伴有伴有伴有关烷烃(ACHD)和氰基chd(CCHD)的儿童的神经发育状态;第三,为了确定CHD儿童发育延迟的流行。
碳通过晶格逐渐溶解,最初形成亚表面,最终形成块状碳化物相。[12,29] 对于炔烃半加氢反应,PdC x 相通过抑制烷烃的过度加氢,提高了烯烃的选择性。[12,13,18,22,29] 这种对选择性的影响是多方面的。首先,最上层阻止氢气在亚表面聚集。[13] 此外,现有溶解氢通过碳化物相到表面的流动性降低。[22,12] 最后,碳化物相增加了从进料中吸附更多碳氢化合物的能垒。[29] 在低转化率下,炔烃的表面毒化作用也是高选择性的原因。[18] 选择性提高的一些实例包括乙炔、炔丙和 1-戊炔的半加氢。 [12,22,28,29]