数字伏安显示 •显示焊接前后的参数。•方便参数设置 焊接循环选择器 •2T:按下扳机激活电弧,松开扳机激活循环结束。•4T:按下扳机启动循环,可以松开扳机。再次按下可停止循环。•点焊:在给定时间内提供焊接电流。焊枪连接器 步进时间 •用于设置点焊时间 底漆速度 •设置焊丝上升速度,以提高引弧效果。防粘 •调整焊接结束时“烧焦”焊丝的长度。此功能可避免焊丝粘在工件上。
了解加速温度曲线对无铅焊接的影响 John L. Evans、Julius Martin 和 Charles Mitchell 奥本大学 阿拉巴马州奥本大学 Bjorn Dahle KIC 热分析 加利福尼亚州圣地亚哥 摘要 由于焊膏供应商定义的峰值温度较高且助焊剂活化时间较长,因此无铅焊接的传统回流曲线通常需要更长的处理时间。当在单个电路设计中集成多种封装类型时,这些曲线变得尤为具有挑战性。在处理具有高热质量的产品设计(例如散热片和金属基板)时,难度会更大。这些设计会在整个电路组件中产生大的热梯度,并进一步增加了寻找“最佳”曲线窗口的复杂性。所有这些问题都导致无铅焊接的回流处理时间显著增加。本文探讨了无铅电子产品大批量生产所需的这些增加的处理时间。并介绍了典型工艺能力和实际生产能力的研究。该研究评估了从小型电路组件(例如手机)到大型电路组件(例如汽车和计算机)的大批量电子产品制造,并研究了一系列“最佳”回流曲线,以加速标准无铅工艺窗口,从而使用自动曲线系统实现目标制造能力。然后,使用这个定义的工艺窗口制造测试载体,并测试其质量(焊料空洞和外观)和焊点可靠性(加速寿命测试)。设计的测试载体包括来自大型物理分布的组件,包括:小型和大型 BGA、QFN 和任何类型的分立元件。在组装过程中,使用虚拟曲线记录工艺曲线窗口的任何偏差。本出版物中提供了质量和可靠性数据,并包括故障分析以确定此建议曲线的能力。采用此曲线策略后,许多制造商可以减少回流无铅电路组件的处理时间,而不会显著降低制造质量或可靠性。此外,本研究为在无铅焊接应用中使用加速曲线速度提供了合理的理解和限制。背景 无铅焊接正在快速发展,与无铅加工相关的制造问题给许多制造商带来了困难。这些困难在过去五年中已得到大量记录,包括基板和元件电镀变化、焊料润湿性和焊点特性的差异以及焊点可靠性变化。5 其中一个更重要的变化是焊接工艺温度的提高,以及这些高温对电子产品质量和加工时间的影响。特别是,焊料(例如 SnAgCu)回流温度的提高,使印刷电路板(具有正常的玻璃化转变温度,T g 为 140 O C-160 OC)暴露在超过 250 O C 的温度下,从而增加了电路板的翘曲。这种变化可能会给产品带来质量问题,尤其是如果进行双面组装加工的话。8,4 回流温度提高的另一个影响是需要延长时间以适应更高的回流温度,同时保持推荐的温度暴露。为了将峰值回流温度从标准共晶 SnPb 焊料的 220 OC - 230 OC 范围提高到 SnAgCu 的 250 OC - 260 OC 范围,推荐的回流曲线时间将显著增加。加工时间的增加将要求制造商降低回流炉的皮带速度或在制造过程中增加炉容量。对于大批量制造商来说,这两种选择都代价高昂。7,9 本研究调查了处理无铅焊接增加的回流温度的替代方法,同时将对许多大批量制造商的财务影响降至最低。本研究重点关注不使用“最佳”回流曲线和保持相同处理窗口对大批量产品的影响。(仅考虑大批量组件,因为降低炉带速度以满足推荐的处理窗口不会对小批量制造商产生重大影响)。本调查重点关注不使用“最佳”回流曲线和保持相同加工窗口对大批量产品的影响。(仅考虑大批量组件,因为降低炉带速度以满足推荐的加工窗口不会对小批量制造商产生重大影响)。本调查重点关注不使用“最佳”回流曲线和保持相同加工窗口对大批量产品的影响。(仅考虑大批量组件,因为降低炉带速度以满足推荐的加工窗口不会对小批量制造商产生重大影响)。
本研究考察了孔隙度对髋臼钢焊接件抗疲劳性的影响。进行了文献综述以确定控制含孔隙焊缝疲劳寿命的参数。开发了一个预测模型,结合这些参数来考虑疲劳的开始和扩展。使用该模型检查了四种类型的孔隙度:单孔隙度、均匀孔隙度、共线孔隙度和簇孔隙度。研究并讨论了模型对参数(板厚、应力比、残余应力、孔隙大小和孔隙类型)的敏感性。从 SL-7 负载历史数据开发了可变幅度负载历史,并用于预测实际使用寿命。这项研究的主要结论是,如果焊缝增强层保持完整,那么焊缝中的孔隙度无关紧要。如果去除增强层,孔隙度的类型和大小将控制疲劳寿命。当受到服务清单的影响时,预计焊缝在任何正常设计寿命内都不会失效。最后,结果与美国船级社的船体焊缝无损检测规则相关。从保守的角度来看,该规范是保守的。