・我们在基本设计中设计了导体板部分,并确认与铝焊接结构相比,使用 1/1 比例的 CFRP 可以减轻桥体重量 25% 以上。针对这个结果,我们设计了一个导体板模型(简化模型)来进行测试。 ・此外,我们设计了连接机构和接头模型,并获得了连接机构的详细设计和制造前景,其静态强度和抗疲劳性能等于或高于铝焊接结构。
7000系列可分为铝合金中强度最高的Al-Zn-Mg-Cu系和不含Cu的焊接结构用Al-Zn-Mg系合金,用于要求高强度和轻量化的部件。7075是被称为超级硬铝的典型热处理Al-Zn-Mg-Cu系合金,用作轻质结构材料。7204是焊接结构用典型热处理Al-Zn-Mg系合金。由于其强度高、接头效率高,焊接后热影响区通过自然时效可恢复到接近母材的强度,因此被用于铁路车辆和陆地结构。1000系列由于其耐腐蚀性和可加工性优良,因此被用于热交换器部件; 3000系列用于管道;4000系列由于其优异的耐热性和耐磨性而用于锻造部件。
附件是 Evans 和 KLingler 撰写的报告,标题为“影响焊接结构在多轴应力和温度变化条件下行为的基本因素”,编号为 SSC-5k。本报告由承包商提交,作为船舶局、船舶和海洋工程部和美国海军部之间的合同 NObs-15470(索引号 NS-011-067)的第三份进度报告。
使用模拟船舶服役历史的可变载荷历史对船舶建造中常见的焊接结构细节进行了一系列广泛的疲劳试验。这项研究的结果表明,线性累积损伤概念可以预测测试结果,但没有研究小应力范围事件的重要性,因为小于 68 MPa (10 ksi) 应力范围的事件被从开发的船舶历史中删除,以减少测试所需的时间。观察到了平均应力的明显影响,但结果并未证实样本尺寸效应的存在。
第 1 节。一般····················································································································· 3 第 2-1 节。轧制钢 ······································································································ 8 第 2-2 节。轧制钢半成品 ········································································ 16 第 2-3 节。用于高热输入焊接的轧制钢 ········································ 18 第 2-4 节。YP47钢板···································································································· 20 第2-5节。具有改进疲劳性能的船体结构钢····································· 22 第2-6节。焊接结构用高强度钢 ························································· 25 第 3 节。钢管 ·· ... ·· ... ·· ...铜和铜合金管··········································································· 44 第 8 节。特殊铸铁阀门·············································································································· 48 第 9 节。锚·· ...船用链条附件····························································································· 53 第 10-3 节。海上链条和链条附件····································································· 55 第 11 节。钢丝绳· ... ·· ...锅炉与压力容器··········································································································· 70
裂纹抑制器增强型铝制海洋结构的新设计和性能评估工具 1.0 目标。 1.1 本研究项目的目标是改进现有的建模能力,以有效可靠地捕捉裂纹抑制器对焊接铝制海洋结构疲劳和断裂性能的影响,并探索裂纹抑制器的最佳设计以满足设计要求。在恶劣的操作环境下设计大型铝制高速船需要焊接结构能够承受制造缺陷和服务引起的缺陷的亚临界增长而不会失效。研究表明,可以通过插入局部高断裂韧性材料或降低裂纹扩展驱动力来阻止裂纹扩展。由于缺乏用于铝结构的裂纹抑制器设计程序,因此无法选择最佳的机械抑制器装置来在裂纹达到临界状态之前阻止其扩散。本研究的目的是开发和实施一种新型计算工具,用于模拟存在裂纹抑制器、残余应力和焊接引起的材料异质性和非线性的情况下焊接铝制海洋结构的曲线裂纹扩展及其相关的残余强度和寿命。 2.0 背景。 2.1 当前和未来船舶制造商对重量和性能的需求要求最佳的轻质铝制船舶
本 NASA 技术标准由美国国家航空航天局 (NASA) 发布,旨在为已被认可为 NASA 计划和项目标准的流程、程序、实践和方法提供统一的工程和技术要求,包括对项目的选择、应用和设计标准的要求。本 NASA 技术标准已获准供 NASA 总部和 NASA 中心和设施使用,适用的技术要求可在合同、计划和其他机构文件中引用。它也可能适用于喷气推进实验室(联邦资助的研究和开发中心 [FFRDC])、其他承包商、赠款和合作协议的接受者以及其他协议的各方,但仅限于适用合同、赠款或协议中规定或引用的范围内。本 NASA 技术标准制定了一般方向并描述了 NASA 对焊接结构所期望的信息类型。本 NASA 技术标准不提供飞行硬件焊接件的详细工艺和质量保证要求。相反,它旨在作为更高级别的文档,其中规定了焊接硬件的最低要求。信息请求应通过 https://standards.nasa.gov 上的“反馈”提交。对此 NASA 技术标准的更改请求应通过马歇尔太空飞行中心 (MSFC) 表格 4657(NASA 工程标准变更请求)提交。原件签名人:_______________________________