焊料是金属的组合,形成熔点低于任何组合元素的合金。在合金的过程中,将金属添加并熔化在一起,然后冷却到合金熔点上方的预定点。对于电子级锡铅(SN63/pb37)棒,这将是高于183°C(361°F)的点,对于诸如SAC305(SN96.5/ag3.0/CU0.5)等无铅合金,这将是高于217-219°C(423-426-426-426-426°F)的点。合金融化时,合金的表面暴露于空气中。空气在合金表面上的这种相互作用形成一个称为滴滴的氧化物层。滴头和合金的密度非常相似,这会导致两者的缓慢分离。通常,Dross与杂质无关,而与氧化速率无关(尽管某些杂质(例如铝(Al)和锌(Zn))确实会增加由于它们的快速氧化而增加了掉落速率)。在IPC-J-STD-006指定的限制范围内的大多数杂质被认为可以接受普通焊接,并且不会导致滴落形成。是什么导致某些酒吧焊料比其他焊料更多?某些公司通常使用回收金属在其钢筋焊料的生产中使用。这并不一定意味着该条质量差。然而,由于过去的炼油做法不佳,人们普遍认为,在钢制焊料中使用再生金属是不可接受的。使用再生金属引起的一个常见问题是,在化学去除杂质的过程之后,化学物质或氧化金属
摘要 将含有大量添加物和铋 (Bi) 和锑 (Sb) 组合的多种高可靠性焊料合金的热疲劳可靠性与仅添加 Bi 或 Sb 的合金进行了比较。该研究使用菊花链测试工具,其中包括 192 针芯片阵列球栅阵列 (192CABGA) 和 84 针薄芯 BGA (84CTBGA)。热循环按照 IPC-9701 附件可靠性指南进行,使用三个不同的热循环曲线,0/100°C、-40/125°C 和 - 55/125°C。结果表明,Bi 和 Sb 的组合通常比单一合金添加物更有效,尽管热循环测试中的可靠性裕度并不总是很大。使用威布尔统计、微观结构表征和故障模式分析比较了两种 BGA 封装的合金性能差异。关键词:无铅合金、高性能焊料合金、高可靠性焊料合金、球栅阵列、热疲劳可靠性、故障模式、固溶强化。引言自欧盟 RoHS 指令 [1] 实施和第一代近共晶商用无铅合金问世以来,无铅焊料合金的开发持续了十多年。随着所谓的第三代高性能无铅合金的出现,无铅焊料合金的发展也日新月异。
抽象QFN软件包已成为移动应用程序的主流设计。随着越来越多的应用程序采用QFN样式软件包,I/O计数要求正在增加。在QFN包装中增加PIN数的典型方法是增加体型以适应其他铅手指。这是不可取的,因为移动设备用户正在推动较小的包装尺寸。通过使用双行设计,可以在相同的整体体型中添加更多的铅手指。这增加了整体性能与包装尺寸比率。先前在双行QFN软件包上发表的研究主要关注制造的设计注意事项。[1-3]由于当前设计使用标准的铅框架处理技术,因此与单行QFN生产相比,不需要其他处理策略。这项研究重点介绍了28条双排QFN软件包的板级焊接联合可靠性。在制造之前,对各种双行QFN足迹进行了机械建模DOE,以通过温度周期测试估算焊料关节寿命。建模之后是雏菊链单元的原型制造。根据JEDEC规格对雏菊链设备进行温度周期测试。进行测试,直到获得完整的寿命估计曲线为止。与单排设计相似的单行设计相比,双行设计实际上可以改善焊料关节可靠性性能。由于包装的直接弯道上没有铅指的双手,这通常是测试过程中包装中最高的应力区域,因此可以增加整体焊料关节寿命。虽然双行包装上的典型失败的铅手指仍然是距包装中心最远的距离,但这些铅手指并不位于包装角中。最终结果表明,双行QFN软件包通过温度周期测试具有良好的性能,并且性能比标准单行QFN软件包的性能提高。
尽管锡是一种非常著名的金属,并被广泛用于工业领域,但就地壳的相对丰度而言,它是一种相当稀有的元素。全世界只有少数几个具有商业价值的锡矿(主要是氧化物锡石),因此纯锡是一种相对昂贵的商品。例如,根据伦敦金属交易所 1993 年的数据,锡的市场价值与镍相当,比铅高出约 20 倍。任何工业过程的目标都是利用最经济的操作条件来生产出高质量的最终产品。因此,鉴于金属成本相对较高,对于任何涉及使用大量锡或锡基合金的过程,充分确定最佳操作参数始终是明智之举。
随着电子技术的发展和第五代蜂窝网络的建设,更高集成度、更大功率的电子设备得到广泛应用,对电子封装材料提出了更高的要求。高铅焊料合金在过去的几十年里被广泛应用于中低温焊接,但因毒性而被禁止使用。具有适当熔化和力学性能的金基焊料合金显示出巨大的替代高铅焊料合金的潜力,近年来受到重视。但与含铅焊料合金相比,新型金基焊料合金的研究相当不足,其性能和可靠性仍不明确。本文综述了近年来低温和中温金基焊料合金的研究,介绍和分析了它们的微观结构、力学性能和可靠性,并讨论和比较了金基焊料合金的新型加工工艺。
关键词:GaN、焊料、AuSn 焊料、溅射、共晶、芯片粘接摘要对于 GaN MMIC 芯片粘接,经常使用 80%Au20%Sn 共晶焊料。通常的做法是使用预制件 AuSn 将芯片粘接到 CuW 或其他一些基板上。在此过程中,操作员可能需要将预制件切割成芯片尺寸,然后对齐预制件、芯片和基板。由于操作员需要同时对齐三个微小部件(预制件、芯片和基板),因此这是一个具有挑战性的过程,可能需要返工。此外,预制件厚度为 1mil(在我们的例子中),这可能导致过量的焊料溢出,需要清理,因为它会妨碍其他片外组装。整个芯片粘接过程可能很耗时。在本文中,我们描述了一种在分离芯片之前在 GaN 晶圆上使用共晶成分溅射靶溅射沉积共晶 AuSn 的方法。它消除了预制件和芯片的对准,并且不会挤出多余的 AuSn。通过使用共晶溅射靶,它还可以简化靶材制造。下面给出了芯片粘接结果。引言宽带微波 GaN MMIC 功率放大器在国防和通信应用中具有重要意义。随着设备性能的提高,芯片粘接变得非常重要,因为它会极大地影响 MMIC 的热预算。80%Au/20%Sn 焊料已用于半导体应用超过 50 年,通常作为冲压预制件。然而,由于需要将 MMIC 芯片中的多个小块和焊料预制件对准到载体上,因此芯片粘接过程可能很繁琐且耗时。在芯片分离之前在整个晶圆上溅射沉积 AuSn 将大大简化芯片粘接过程。然而,溅射的 AuSn 成分对于正确的焊料回流至关重要。由于 Au 和 Sn 的溅射产率不同,AuSn 溅射靶材的化学性质和沉积的 AuSn 薄膜之间存在显著的成分变化 [参考文献 1]。下图 1 显示了 Au-Sn 相图。通过仔细控制溅射参数(功率、压力和氩气),我们能够从共晶成分溅射靶中沉积共晶 AuSn。制造共晶成分溅射靶要容易得多/便宜得多。
网站:www.lookpolymers.com电子邮件:sales@lookpolymers.com电话:+86 021-51131842手机:+86 13061808058 Skype Skype:LookPolymers地址:United North Road 215
转移和回光后,沉积的焊球合金量是孔径k,孔是焊接开口的总面积,T是其厚度,k是焊料粘贴系数。用于脚趾土地图案a脚趾,焊接量大约为脚趾的焊料。焊接连接组件以外的脚趾除以基于剩余的沉积焊料量确定焊料对峙高度。通过此逻辑,可以计算每个引线的焊料对峙高度(SOH),如等式5所示。