供电电源 VDD ........................................................................................................................................... .. -0.3V~+10V VM 、 COUT 端允许输入电压 .................................................................................................. ....VDD-25V~VDD+0.3V DOUT 端允许输入电压 ......................................................................................................................- 0.3V~VDD+0.3V 工作温度 TA ..................................................................................................................................................- 40 ℃ ~+85 ℃ 结温 ........................................................................................................................................................................... 150 ℃ 贮存温度 .......................................................................................................................................................- 65 ℃ ~150 ℃ 功耗 PD ( TA=25 ℃) SOT23-6 封装(热阻 θJA = 200 ℃ /W ) .................................................................. ..625mW 焊接温度(锡焊, 10 秒) ..................................................................................................................................... 260 ℃
摘要:涡轮发动机盘寿命预测和相关风险的理解仍然是当今设计师面临的重大挑战。尽管在材料测试和特性分析以及损伤容限和线性弹性断裂力学建模的应用方面取得了进展,但在正确评估载荷、几何形状和材料设计性能变化方面仍然存在空白。再加上先进的混合和复合材料系统的应用,准确处理材料变化的需求就更大了。仍然存在关键部件故障事件,而目前使用的现有分析方法、测试和检查无法正确解释这些事件。概率方法的应用提供了一种有效且有用的方法来建模这种变化,同时也提供了一种评估随机变量敏感性和风险评估的方法。目前的研究以及适用的行业和政府监管指南和出版物都已审查并将被介绍。本文将讨论最有效的工具、建模方法和预测故障风险评估,以及对未来工作的建议。本文介绍了概率方法在管理机队发动机和部件使用方面提供经济有效方法的潜力,以及其在机队管理中增强“因故退役”概念安全实施的能力。
芯片贴装是集成电路 (IC) 封装工艺中最关键的工艺之一。过去几年,芯片厚度越薄,漏源导通电阻 RDS(on) 越小,顶部金属和焊盘之间的硅电阻越低,散热性能越好,堆叠封装厚度越薄,重量越轻,这些要求就越高。这种三维技术代表了封装创新的下一波浪潮,并将在未来几年内实现大幅增长 (Ibrahim 等人,2007 年)。这些趋势对现有的电子封装技术(主要是芯片拾取工艺)提出了相当大的挑战。必须特别注意处理更薄芯片的工艺,以确保半导体产品的可靠性和质量 (Huiqiang 等人,2015 年;Carine 等人,2014 年)。
和传输线、PCB 和 IC 材料、阻抗匹配、电源分配网络、并行性和串扰。EMI 和 EMC、反射和终端和 IO 焊盘、片上无源器件、ESD 保护管理、IC 和分立元件封装、热考虑、IC 故障和可靠性、微系统封装和应用。实验室教程:使用集总模型的阻抗匹配、使用微带模型的阻抗匹配、EMC 和 TL 不连续性建模和仿真、键合线建模和仿真、电源分配网络建模、并行传输线建模和分析、串扰和噪声分析、EMI/EMC 干扰分析、片上无源器件和角分析。2. RTL 合成和数字后端:HDL(Verilog)编码基础。可合成的 RTL,
目前,微电子设备中用于芯片到封装连接的最常用材料是铝(Al)焊盘和铜(Cu)线。然而,用于连接这些组件的引线键合工艺可能导致金属间化合物的形成,从而导致电化学腐蚀 [1 – 3] ,以及产生柯肯达尔空洞 [4,5] 。这些问题严重限制了微电子封装的长期可靠性。为了解决半导体行业对材料的成本效益、性能和可靠性的担忧。自 21 世纪初以来,人们定期评估铜焊盘上的铜线键合(Cu-to-Cu 键合)方法,但从未发展成为工业应用。2018 年的综述 [6] 总结了挑战和局限性。铜是一种很有前途的微电子材料,因为它的电导率与铝的电导率之比为 5:3,而且熔点高,大大降低了电迁移 [7]。电沉积铜的固有特性,例如与发芽/生长类型相关的杂质和微观结构演变,会使其对腐蚀敏感。虽然铜的氧化膜提供了一定的防腐蚀保护,但它不像不锈钢等其他金属上形成的钝化膜那样稳定、致密或均匀 [8,9]。铜焊盘的集成对半导体行业提出了重大挑战。实现铜的受控表面状态对于实现与封装的可靠连接至关重要。
• A121 60 GHz 脉冲相干雷达 (PCR),集成基带、RF 前端和封装天线 (AiP) • 32 位 ARM ® Cortex ® M4 MCU (STM32L431CBY6),80 MHz 时钟速度,128kB 闪存,64 kB RAM • 18.6x15 mm 小型尺寸,针对最大天线增益进行了优化 • 1.8 V 模拟和数字电源 • 1.8 V 或 3.3 V IO 接口电源 • 工作温度 -40° 至 85°C • 通过 UART、I2C、GPIO、复位支持外部 I/F • SWD/JTAG 用于 SW 闪存和调试 • 可以集成在塑料或玻璃天线罩后面,无需任何物理孔径。有关更多信息,请参阅硬件和物理集成指南 [6]。 • 平面栅格阵列 (LGA) 焊盘 • 提供密封卷轴,用于自动组装 • 用于 SWD 编程的 PCB 测试点
摘要 — 激光超声检测是一种新颖的、非接触的、非破坏性的技术,用于评估微电子封装中焊料互连的质量。在该技术中,通过比较已知良好参考样本和被测样本的平面外位移信号(该信号由超声波传播产生)来识别焊料互连中的缺陷或故障。实验室规模的双光纤阵列激光超声检测系统已成功证明可以识别先进微电子封装(如芯片级封装、塑料球栅阵列封装和倒装芯片球栅阵列封装)中焊料互连中的缺陷和故障。然而,任何计量系统的成功都依赖于精确的数据,以便在微电子行业中发挥作用。本文使用量具重复性和再现性分析证明了双光纤阵列激光超声检测系统的测量能力。工业倒装芯片球栅阵列封装已用于使用激光超声检测系统进行实验,检测数据用于进行重复性和再现性分析。量具重复性和再现性研究也已用于选择已知的良好参考样品来与受试样品进行比较。
减薄硅芯片在柔性基板上的倒装芯片组装 Tan Zhang、Zhenwei Hou 和 R. Wayne Johnson 奥本大学 阿拉巴马州奥本 Alina Moussessian 和 Linda Del Castillo 喷气推进实验室 加利福尼亚州帕萨迪纳 Charles Banda 物理科学实验室 摘要 将减薄硅芯片(25-100 µ m)组装到柔性基板上为从智能卡到太空雷达等各种应用提供了超薄柔性电子产品的选择。对于高密度应用,可以通过堆叠和层压预组装和测试的柔性层然后处理垂直互连来制造 3-D 模块。本文介绍了将减薄芯片倒装芯片组装到聚酰亚胺和液晶聚合物 (LCP) 柔性基板上的工艺。已经开发出两种用于聚酰亚胺和 LCP 柔性基板的组装方法。在第一种方法中,将焊料凸块芯片回流焊接到图案化柔性基板上。需要使用夹具在回流期间保持柔性基板平整。回流之后是底部填充分配和固化。底部填充分配工艺对于避免底部填充流到薄硅片顶部至关重要,我们将在下文中讨论这一工艺。在第二种方法中,通孔通过聚酰亚胺或 LCP 蚀刻,露出接触垫的底面。将焊膏挤入通孔,回流并清洗,在通孔中形成焊料“凸块”。对浸焊产生的具有低轮廓焊料凸块的芯片进行焊剂处理、放置和回流。然后对芯片进行底部填充。这种方法可降低总组装厚度。简介为了满足单芯片和堆叠芯片封装中不断降低的轮廓要求,正在开发薄芯片的组装工艺。1-4 柔性基板(25-50 µ m)提供了一种进一步减小封装厚度的方法。减薄的 Si-on-flex 结构也有利于太空应用。减薄的 Si 虽然易碎,但也很灵活。减薄的 Si-on-flex 可以卷成管状进行发射,并在太空中展开,从而形成带有集成电子设备的大面积天线。组装减薄的 Si-on-flex 必须解决的问题包括:基板设计和制造、减薄后的凸块、芯片处理、回流期间的基板平整度和底部填充分配。这些将在以下章节中讨论。基板本工作中使用了两种柔性基板材料:聚酰亚胺和液晶聚合物 (LCP)。LCP 特性包括 100GHz 下的良好介电性能、低吸湿性和极低的透湿性。5-13 LCP 的热膨胀系数 (CTE) 可以在 LCP 薄膜的双轴挤出过程中控制。市售薄膜的 CTE 为 8 和 17ppm/o C。在本工作中使用 8ppm/o C LCP 薄膜。在用于倒装芯片组装的传统柔性基板设计中,铜芯片连接点的图案化位置与芯片组装位置在柔性薄膜的同一侧(图 1)。阻焊层用于定义可焊焊盘区域(顶面设计)。另一种方法是蚀刻聚酰亚胺或 LCP 通孔,露出铜焊盘的底面(背面设计)。通孔通过激光钻孔或反应离子蚀刻 (RIE) 制成。倒装芯片从铜图案的对面组装(图 2),从而无需阻焊层并减小了总厚度。这种方法的另一个优点(低轮廓凸块)将在后面介绍。顶面聚酰亚胺基板由约翰霍普金斯大学应用物理实验室制造,而激光钻孔背面 LCP 设计由 STS ATL 公司制造。背面 (RIE) LCP 和聚酰亚胺基板由奥本大学制造。只需一层金属即可布线菊花链芯片互连图案。
基质。与细胞外基质一起,它们形成了化学疗法的强障碍,1导致了次优的治疗作用和毒性,例如心脏毒性,肾毒性,肾毒性,骨髓抑制和其他副作用。2次优化浓度可能有助于发展耐药性。3 TME分子生物学和新抗癌药物的不断发展,包括化学疗法分子,抗体,siRNA,miRNA,miRNA,质粒DNA,肽和工程免疫细胞继续提供新的有效治疗方案。但是,由于缺乏有效的输送系统,它们的有效性通常不会转化为临床治疗突破。纳米药物具有巨大的减轻癌症潜力。他们改变了抗癌药物的药代动力学,提高稳定性,提供特定的靶向,表现出较高的表面与体积比,控制药物释放和重新模型免疫液压 - 压力性TME。4与常规配方相比,纳米形成(即,基于纳米颗粒的药物输送载体)依靠功能性纳米材料来响应内部刺激(例如氧化还原或氧化环境,pH刺激,肿瘤特异性
