摘要:线材和电弧增材制造 (WAAM) 是一种基于传统电弧焊工艺的先进金属材料 3D 打印方法。WAAM 被认为是制造大尺寸金属部件的合适方法,具有高沉积速率和低成本的特点。在本研究中,使用 WAAM 沉积专门设计和制造的低碳高强度钢 (Grade 3D AM 80 HD) 线材(相当于 AWS ER 110S-1 线材的成分)以打印多焊道壁,旨在探索其在重载海洋应用中的可行性。进行了参数研究以找到最佳沉积电压和重叠率。采用垂直位置补偿法来优化相邻层之间焊枪的步进距离。沉积部件的微观结构通过 Thermal-Calc 软件进行表征和指示,然后测量硬度并预测拉伸强度。此外,还对 WAAMed 3D AM 80 HD 壁、3D AM 80 HD 线材、AWS ER 110S-1 线材和线材制造商(Voestalpine Böhler Welding Corporation)生产的 WAAMed 壁的抗拉强度进行了比较。关键词。线材和电弧增材制造 (WAAM)、钢材、参数研究、微观结构、机械性能。
• Srinath Gudur、Suryakumar Simhambhatla 和 Venkata Reddy N.:通过分阶段变形增强直接能量沉积中的形状复杂性,Int. J. Automation Technol.,第 16 卷,第 5 期,页642- 653, 2022 • Srinath Gudur、Vishwanath Nagallapati、Sagar Pawar、Gopinath Muvvala、Suryakumar Simhambhatla:关于基材加热和冷却对电弧增材制造中焊道几何形状的影响及其与冷却速率的相关性的研究,今日材料:会议录,卷。 41,页431–436,1月2021 • Sagar Pawar、Srinath Ellaswamy Gudur、Vishwanath Nagallapati、Amit Choudhary、Arun Torris 和 Gopinath Muvvala:关于电弧增材制造 Inconel 625 多层壁的各向异性及其与熔池热历史的相关性的研究,Mater。科学。英语。 A,卷840,页142865,4月2022 • Vivek Chaitanya Peddiraju、Kranthi Kumar Pulapakura、Desuru Sree Jagadeesh、KSAthira、Srinath Gudur、S. Suryakumar、Subhradeep Chatterjee:在钛上焊接沉积镍以实现 Ti-Ni 基金属间化合物的表面硬化,Materials Today:Proceedings,vol。 27,页2096–2100 年 1 月2020 年。
摘要 这些课程材料是金属加工四部分中专课程的第一部分。该课程是军方开发的一系列课程包中的一门,这些课程包被选中用于职业指导和民用课程开发。第一部分,氧乙炔焊接简介*包含七节课,涵盖五十四个小时的教学:车间和航线安全实践、带式工具、焊接设备的操作和维护、碳钢的焊道和搭接接头、碳钢的对接接头、碳钢的 T 形接头和位置焊接。第二部分,氧乙炔焊接、切割;焊接、钎焊;和硬表面,包含七节课,涵盖四十小时的教学:机械制图和蓝图阅读、焊接和耐腐蚀铁合金的接头、碳钢的切割、银和铅焊接、钎焊钢和灰铁铸件、熔焊铁铸件和巴德表面处理。教师材料包括课程表、详细的课程计划和教学计划,其中包含教学单元、标准目标和所需的其他材料。学生材料包括每个模块的学习指南,其中包含目标、信息、复习练习和每节课的参考资料:车间安全的编程文本:焊接术语词汇表的讲义:和讲义书目。不提供建议的视听材料。lYLE)
由于焊接电流会影响电极烧尽速度、熔合深度和焊件几何形状,因此它是电弧焊工艺中最重要的变量。焊道形状、焊接速度和焊接效率都受电流影响。由于直流电极负极 (DCEN)(正极性)产生更好的效果,因此电极正极 (DCEP) 上的焊接穿透深度和行进速度更大,并且它用于大多数 GTAW 焊接(反极性)。反极性允许电极尖端快速升温并在气体钨中降解。因为阳极比阴极升温更快。气体钨电弧焊中的较高电流会导致飞溅和工件损坏。同样,在气体钨电弧焊中,较低的电流设置会导致填充焊丝粘住。为了沉积等量的填充物,必须长时间施加高温。因此,对于较低的焊接电流,通常会看到更大的热影响区域。在固定电流模式下调整电压以保持电弧电流稳定 [3,4]。与其他焊接工艺相比,我们通常通过钨极惰性气体焊接实现无缺陷接头。让您更好地控制焊接,从而实现更快、更高质量的焊接。另一方面,GTAW 比大多数其他焊接方法复杂得多,难以跟踪,而且速度要慢得多。填充金属通常被使用,但是一些焊接(称为自熔焊或组合焊)不需要它。这种方法提供了竞争方法,例如焊接技术包括屏蔽金属电弧焊和气体金属电弧焊。
摘要:金属增材制造工艺自诞生以来就得到了长足的发展,现代系统能够制造结构应用的部件。然而,要通过这些方法成功加工,需要进行大量实验,才能找到优化参数。在基于激光的工艺中,例如直接能量沉积,通常会沉积单道珠并进行分析,从而获得有关输入参数如何影响输出对基材的粘附等特性的信息。这些特性通常使用专门的软件从切割线珠的横截面获得的图像中确定。所提出的方法基于 Python 算法,使用 scikit-image 库和在 H13 工具钢上生产的 18Ni300 马氏体时效钢的光学显微镜成像,并计算 DED 生产的线珠的相关特性,例如轨道高度、宽度、渗透性、润湿性角度、基材上方和下方的横截面积和稀释比例。 18Ni300 马氏体时效钢沉积物的优化条件为:激光功率为 1550 W,进给速率为 12 g min −1,扫描速度为 12 mm s −1,保护气体流速为 25 L min −1,载气体流速为 4 L min −1,激光光斑直径为 2.1 mm。对于横截面焊道,计算其各自的高度、宽度和穿透力的误差分别为 2.71%、4.01% 和 9.35%;稀释比例计算的误差为 14.15%,基材上方面积的误差为 5.27%,基材下方面积的误差为 17.93%。处理一幅图像的平均计算时间为 12.7 秒。开发的方法是纯分段的,可以从机器学习实施中受益。
激光粉末床熔合 (L-PBF) 使 Glenn Research Copper 84 (GRCop-84) 能够通过增材制造 (AM) 制造出低混合电流驱动发射器组件,Glenn Research Copper 84 (GRCop-84) 是一种具有高抗拉强度和导电性的 Cr 2 Nb 沉淀硬化合金。由于构建体积限制,需要对通过激光焊接连接在一起的模块化段进行 AM 制造。开发了一种夹具系统,用于对准和压缩 0.5 毫米厚的对接焊缝,用氩气保护内表面,并防止组装过程中发生变形。外部夹具和夹板对准发射器部分,同时为脉冲 1070 nm 光纤激光器提供光束通道,而内部微型千斤顶在波导段内膨胀,消除连接部分之间的高度偏移并分配氩气保护气。传导模式焊接可防止形成锁孔和光束穿透波导内部,消除飞溅并产生光滑的底部焊道。顶面的表面粗糙度为 R a =2.34 µm,底面的表面粗糙度为 R a =3.17 µm。焊缝的平均 UTS 为 476 MPa,与 900°C 5 小时热处理后的 520 MPa UTS 相似。DOI:PACS 编号:I. 简介 Glenn Research Copper 84 (GRCop-84) [1], [2] 是一种铌铬化物 (Cr 2 Nb) 8 原子%Cr、4 原子%Nb [3] 沉淀硬化合金,适用于采用激光粉末床熔合 (L-PBF) 的增材制造 (AM) [4],[5],[6],[7],[8]。 L-PBF GRCop-84 的热导率在 260 W/m∙K [5] 到 300 W/m∙K [6] 之间(OFC 的 75%-84%),电阻率为 2.5 µΩ∙cm [9],为无氧铜 (OFC) 的 140%,屈服强度为 500 MPa,打印状态下的 UTS 为 740 MPa,伸长率为 20% [4],经 450°C 热处理 (HT) 后屈服强度增加到 810 MPa,UTS 为 970 MPa,伸长率为 9%,或经 900°C HT 后屈服强度降低到 300 MPa,UTS 为 520 MPa,伸长率为 26-37% [10]。与挤压或热等静压 (HIPing) [12] 粉末固结相比,L-PBF [11] 过程中细化沉淀物尺寸可提高强度,因为 2/3 的抗拉强度来自 Orowan 机制 [13]。高抗拉强度和稳定的沉淀物可用于火箭发动机 [5],[6],[7],[8] 或聚变反应堆 [14],[15] 的高温。高热导率和与 Nd:YAG 和光纤激光器的耦合不良 [16] 增加了传统铜合金的表面粗糙度和空隙率 [17]。GRCop-84 的 L-PBF 可实现全密度(> 99.9%)[4],平均垂直侧壁粗糙度为 Ra =3-4 μm [18]。通过机械抛光 [18] 或化学机械抛光 [20],[21],AM GRCop-84 的表面粗糙度[19]降低至 Ra <~0.3 μm,在 4.6 GHz 下实现低损耗。由于 14 vol% Cr 2 Nb [7],[11] 增强了 GRCop-84 的 AM,近红外激光的低温吸收得到了改善。