联系信息 洛克希德马丁公司 圣巴巴拉焦平面业务发展部 电话:(805) 571-2302 www.lockheedmartin.com 蜂鸟色彩设计是
图 2 显示了超透镜在中红外照明下的操作性能。如上所述,法线入射的 TE 和 TM 光束将偏转约 15° 到表面法线两侧的各自焦平面。APL 开发了一个简单的程序来表征超透镜在两个窄中红外光谱区域(4.26 和 4.67 µm)内的偏振选择性,这使得使用单个中红外探测器就可以收集与四种输入偏振/样品方向排列组合相关的图像。首先,在入射光束中使用线性偏振器,样品的方向如图 2 所示,用一系列 TE 和 TM 输入照射超透镜。TM 光被偏转至探测器,而 TE 响应则远离 TM 焦平面。收集完这两幅图像后,样品绕光源法线旋转 180°,TE 和 TM 焦平面也随之旋转。然后用 TE 和 TM 序列的偏振中红外光照射样品,在探测器平面上生成最后两幅图像。
摘要:激光金属沉积 (LMD) 工艺是一种增材制造方法,通过激光束与气体/粉末流的相互作用生成 3D 结构。流径、表面密度和焦平面位置会影响沉积轨迹的尺寸、效率和规律性。因此,准确了解气体/粉末流特性对于控制工艺和提高其在工业应用中的可靠性和可重复性至关重要。本文提出了多种实验技术,如气压测量、光学和称重方法,以分析气体和粒子速度、粉末流直径、其焦平面位置和密度。这是针对三种喷嘴设计和多种气体和粉末流速条件进行的。结果表明:(1) 粒子流遵循高斯分布,而气体速度场更接近于平顶分布;(2) 轴向、载体和整形气流显著影响粉末流的焦平面位置;(3) 只有整形气体、粉末流速和喷嘴设计会影响粉末流直径。然后对三个喷嘴分别进行具有 RANS 湍流模型的气体和粉末流的 2D 轴对称模型,结果显示与实验结果具有良好的一致性,但压力测量对气体速度的估计过高。
摘要:我们设计了一种视野为 360° x180° 的超广角镜头 - 鱼眼镜头 - 用于太空环境。作为案例研究,假设镜头安装在穿过彗星尾部的旋转探测器上。镜头随着穿过彗星彗发的探测器旋转,可以绘制从内部尾部看到的整个天空,提供有关等离子体和尘埃空间分布的前所未有的数据。考虑到镜头的预期太空应用,设计时已考虑了辐射硬化玻璃。镜头的一个关键特性是投影在焦平面上的天空分布图的“角度尺度”均匀性 (F-theta),从而可以获得可靠的整个天空重建。我们还精心设计了近乎远心的设计,以便允许放置在焦平面上的滤光片正常工作。本文介绍了一种远心鱼眼镜头,其工作分辨率为像素限制,波段范围为 500 nm 至 770 nm,并具有 F-theta 失真。
公司:IERUS Technologies, Inc. 地点:阿拉巴马州亨茨维尔 主题:N201-079 技术类别:先进电子学 第二阶段 提案标题:极其精确的星体跟踪器 SYSCOM:SSP FST 事件:WEST 2023 摘要:IERUS Technologies 和阿拉巴马大学亨茨维尔分校联手转化了由 NASA 喷气推进实验室 (JPL) 开发的焦平面计量技术。该技术能够高精度地定位焦平面阵列中的像素。事实证明,这种技术与精密望远镜相结合,可以测量焦平面上恒星的位置,精度优于 100 毫角秒。热分析表明,预期的环境不会使精度降低到这个极限以下。光学分析表明,标称设计将提供衍射极限性能。关键词:成像、计量、卫星、空间、可见光传感器、星跟踪器、焦平面阵列、干涉测量法 POC:Stephen Fox,stephen.fox@ierustech.com NAICS:541712
公司:IERUS Technologies, Inc.地点:阿拉巴马州亨茨维尔 主题:N201-079 技术类别:先进电子技术 第二阶段 提案标题:极其精确的星体跟踪器 SYSCOM:SSP FST 事件:WEST 2023 摘要:IERUS Technologies 和阿拉巴马大学亨茨维尔分校联手将 NASA 喷气推进实验室 (JPL) 开发的焦平面计量技术转化为现实。该技术能够以高精度定位焦平面阵列中的像素。事实证明,这种技术与精密望远镜相结合,可以测量焦平面上恒星的位置,精度优于 100 毫角秒。热分析表明,预期的环境不会使精度降低到这个极限之外。光学分析表明,标称设计将提供衍射极限性能。关键词:成像、计量、卫星、空间、可见光传感器、星跟踪器、焦平面阵列、干涉测量法 POC:Stephen Fox,stephen.fox@ierustech.com NAICS:541712
公司:IERUS Technologies, Inc. 地点:阿拉巴马州亨茨维尔 主题:N201-079 技术类别:先进电子技术 第二阶段提案标题:极其精确的星体跟踪器 SYSCOM:SSP FST 事件:WEST 2023 摘要:IERUS Technologies 和阿拉巴马大学亨茨维尔分校联手将 NASA 喷气推进实验室 (JPL) 开发的焦平面计量技术转化为现实。该技术能够以高精度定位焦平面阵列中的像素。该技术与精密望远镜相结合,可以测量焦平面上恒星的位置,精度优于 100 毫角秒。热分析表明,预期的环境不会降低超过此极限的精度。光学分析表明,标称设计将提供衍射极限性能。关键词:成像、计量、卫星、空间、可见传感器、星跟踪器、焦平面阵列、干涉测量法 POC:Stephen Fox,stephen.fox@ierustech.com NAICS:541712
摘要:光学畸变阻止望远镜达到其理论衍射极限。一旦估计,这些畸变就可以通过在闭环中使用可变形的镜子进行补偿。焦平面波传感可以直接从科学传感器拍摄的图像中估算完整光路的畸变。但是,当前的局灶性平面波前传感方法依赖于物理模型的物理模型,这些模型可能会限制校正的整体性能。这项研究的目的是使用无模型的增强学习来开发一种数据驱动的方法,以自动执行对像差的估计和校正,仅使用围绕焦平面围绕焦平面作为输入而获得的相位多样性图像。我们在加强学习的框架内提出校正问题,并在模拟数据上培训代理。我们表明该方法能够可靠地学习各种现实条件的有效控制策略。我们的方法还证明了对广泛的噪声水平的鲁棒性。
机载图像处理算法探索 算法硬件在环测试 快速平面卫星原型设计和实验 相机/焦平面概念开发 飞行硬件功能测试 在轨有效载荷“操作孪生”,在“飞行”时进行开发 在轨场景重建和异常解决 政府拥有和运营的有效载荷验证和确认