摘要进行研究的目的是隔离,识别和表征来自UCG废水的合适细菌菌株,作为生物学方法的潜在候选者。为此,采用了直接的培养程序和独特的生化选择来洞悉细菌的特定特性。从UCG废水分离的100个菌株中,三个(Paenibacillus pasadensis Safn-007,Peanibacillus humicus au34和葡萄球菌Warneri DK131)证明了降级酚和特定生物化学特性的能力。苯酚降解的上述菌株达到了90%以上,而其他选定菌株的AV ERAGE苯酚去除率为82.9%,范围从66.1%到90%。细菌菌株属于多酶产生者,并构成了潜在技术重要的EN酶的可能来源。表型微阵列板用于表征菌株的代谢特性。发现,测试的碳代谢物的74%,67.4%和94.2%被Paenibacillus pasadensis safn-007,Peanibacillus humicus au34和葡萄球菌华纳里葡萄球菌DK131使用。Among C sources, the strains have the capability to metabolize some substrates appearing in phenol pathways, such as: N-acetyl-D-glucosamine, succinic acid, α-hydroxy-glutaric acid-γ-lactone, bromosuccinic acid, mono-methyl succinate, methyl-pyruvate, p-hydroxy-phenyl acetic acid, M-羟苯基乙酸,L-半乳酸 - γ-乳酮,D-半乳酸-γ-内酯,苯乙胺。细菌显示出对pH和渗透压的耐受程度不同,它们可以在不同的栖息地中繁衍生息。这些菌株的另一个特征是它们对许多抗生素(多耐药细菌)的高抗性。这些特性允许将孤立的细菌菌株用作苯酚受污染环境的生物修复的良好候选物。地下煤气化过程中的废水是一个很好的极端环境,可以隔离具有特定代谢特性的独特细菌。
蓝色氢气是一种通过甲烷蒸汽重整或煤气化生产氢气的过程,但产生的碳被捕获和封存,而不是将其释放到大气中。因此,蓝色氢气的碳足迹取决于所用碳捕获技术的效率,通常认为最大的二氧化碳捕获率为 70% 至 95%。蓝色氢气生产尚未大规模实现,但预计在未来几十年全球绿色氢气产量预计增加的过程中,蓝色氢气将发挥重要的过渡作用(见下一章)。氢气生产还指定了几种其他颜色代码,其中“粉色”和“黄色”氢气分别表示由核能或电网电力驱动的电解。“棕色”或“黑色”氢气指的是通过煤气化生产的氢气,该过程的二氧化碳排放量极高,与绿色氢气截然相反。
(投资比例:J-POWER 50%、中国电力 50%、广岛县丰田郡大崎上岛町、166MW) *1 EAGLE:J-POWER 若松研究所的吹氧煤气化项目。煤气、液体和电力能源应用的简称 *2 国家研究开发机构新能源和工业技术发展组织 (NEDO) 与中国电力合作资助的项目。
利用可再生能源生产氢气不会产生温室气体,是实现网络脱碳的一种方式。氢气也可以从天然气或煤气化中生产,与碳捕获和储存相结合,有可能提供低成本、低碳的气体。氢气可用于补充天然气网络中的天然气,以与电池技术相同的方式提供储备能源,既碳中性,又安全且经济高效。
目前在印度的碳捕获仅限于某些行业/应用,在某些行业/应用中,碳捕获是该过程的一部分,即尿素的生产。印度的尿素生产约为24 MTPA,在氨中使用捕获二氧化碳到尿素转化过程。在Jamnagar的Reliance Industries Limited(Petcoke气化能力的10 MTPA)和Angul中的JSPL(煤气化能力的2 MTPA)中,Reliance Industries Limited的气体调节过程也被捕获为气体调节过程的一部分,但CO2在很大程度上被释放到大气中,未利用或储存。
化学表征 - 近端和最终分析。为工业目的,煤炭碳化(可乐制造),煤气化和煤炭氢化的制备。煤层甲烷:一种新的能源。煤炭床中煤炭和甲烷产生的成熟。煤层甲烷勘探和生产的基本面。煤炭勘探和煤炭储量估算方法。印度的煤炭生产和煤炭工业问题。印度一些重要的煤田的详细地质。原子燃料:自然界原子矿物的发生方式和关联。原子矿物作为能源。印度的勘探和生产地质视野方法。该国的核电站和未来的前景。原子燃料和环境。
《联合国气候变化框架公约》京都议定书下的清洁发展机制 (CDM) 为印度电力行业提供了通过减少温室气体排放 (GHG),特别是二氧化碳 (CO 2 ) 来赚取收入的机会。印度在 CDM 项目方面拥有巨大的潜力。基于更高效技术的发电,例如超临界技术、整体煤气化联合循环、旧火电厂的改造和现代化、热电联产以及可再生能源,都是电力行业 CDM 的一些潜在候选项目。能源效率和节约项目也是符合条件的 CDM 项目,因为这些项目也将节省能源并减少与电网连接的发电站产生的相关二氧化碳排放。
新的高效燃煤电厂正在并将继续建设,以减少每兆瓦电力输出产生的污染物量。这些电厂将利用超临界、超超临界和先进超超临界技术。超临界技术之间的区别仅在于蒸汽的压力和温度。压力和温度越高,电厂效率越高。虽然不久的将来的电厂可能需要碳捕获和储存系统 (CCS) 或综合煤气化联合循环 (IGCC) 来实现排放目标,但这些设备超出了本文的讨论范围。下表概述了未来技术的典型压力和温度 (Phillips & Wheeldon, 2011),并指出超超临界和先进超超临界这两个术语不是正式定义。
6 这不包括韩国的抽水蓄能和小水电。 7 根据韩国《可再生能源法》,韩国的可再生能源还包括燃料电池、综合煤气化联合循环 (IGCC) 和垃圾发电。 8 根据 MOTIE 的第 11 个长期电力供需基本计划 (BPLE) 实施指南,2030 年与 2023 年相比的净电力需求增量。 注:COP28 承诺将可再生能源增加三倍,但并未指定基准年,但确实包括到 2030 年至少实现 11,000 吉瓦的目标。本报告以 2023 年为基准,符合:国际可再生能源机构 (IRENA)。跟踪 COP28 成果:到 2030 年将可再生能源容量增加三倍。2024 年 3 月 19 日。第 8 页。