轻微照射的迷你纽扣具有潜在的密度与托管大量液态水海洋(“ Hycean”行星)一致。已经提出了在大气中同时存在氨(NH 3)的存在作为这种世界的细节。JWST观察K2-18b(原型Hycean)发现了CO 2的存在,而NH 3至<100 ppm的耗竭;因此,已经推断出该星球可以容纳液态水域。相比之下,气候建模表明,包括K2-18B在内的许多迷你纽扣可能太热了,无法容纳液态水。,我们通过研究岩浆海洋对迷你北极大气化学的影响,提出了一种解决观测和气候建模之间的差异的解决方案。我们证明,大气NH 3耗竭是岩浆在还原条件下岩浆中氮种的高溶解度的自然结果。恰好是厚氢包膜与熔融行星表面通信的条件。岩浆海洋模型将K2-18b至3σ的当前JWST光谱重现,这表明这是对当前观察的可信解释,就像主持液态水海洋的星球一样。可以用来排除岩浆海洋模型的光谱区域包括>4μm区域,其中CO 2和CO特征主导:Magma Ocean模型表明,与自由化学检索相比,系统的CO 2 / CO比率低于自由化区域的估计,这表明对该光谱区域的更深入观察到,该光谱区域的更深入的观察可能能够区分液态水和Magma oni-Neptunes的海洋。
MO-99是核医学中最重要的放射性核素。 它用于生产TC-99M发电机,这些发电机每年在全球超过3000万个诊断核医学程序中使用。 TC-99M用于100多种不同类型的诊断核医学程序,包括评估心肌功能,癌症的检测和分期,脑部疾病,感染和许多其他疾病。 因此,MO-99的稳定且持续的供应必须伴随着转换过程,从使用高度富集的铀(HEU)到低增强的铀(LEU),以制造核反应堆照射的靶标。 使命和目标WG3的主要目的是确保MO-99供应的连续性在整个目标生产从HEU转换为Leu的过程中。 这意味着在此过程中无缝供应HEU和LEU。 工作是通过检查三个主要领域完成的:1)确定在HEU/LEU转换过程中可能发生的风险; 2)定义风险评估过程; 3)建议相关的政策选择,以避免MO-99/TC-99M的供应链中的任何不连续性,由转换过程引起或引起。 除了定义风险并完成风险评估矩阵外,工作组建议主要关注三个建议,这些建议将减轻从HEU转换为LEU目标的几个重要风险因素以生产医疗放射性核素。 WG3还收到了WG4的讨论项目。 此项目解决了基于LEU的目标在欧洲使用的设计协调性的可行性。MO-99是核医学中最重要的放射性核素。它用于生产TC-99M发电机,这些发电机每年在全球超过3000万个诊断核医学程序中使用。TC-99M用于100多种不同类型的诊断核医学程序,包括评估心肌功能,癌症的检测和分期,脑部疾病,感染和许多其他疾病。因此,MO-99的稳定且持续的供应必须伴随着转换过程,从使用高度富集的铀(HEU)到低增强的铀(LEU),以制造核反应堆照射的靶标。使命和目标WG3的主要目的是确保MO-99供应的连续性在整个目标生产从HEU转换为Leu的过程中。这意味着在此过程中无缝供应HEU和LEU。工作是通过检查三个主要领域完成的:1)确定在HEU/LEU转换过程中可能发生的风险; 2)定义风险评估过程; 3)建议相关的政策选择,以避免MO-99/TC-99M的供应链中的任何不连续性,由转换过程引起或引起。除了定义风险并完成风险评估矩阵外,工作组建议主要关注三个建议,这些建议将减轻从HEU转换为LEU目标的几个重要风险因素以生产医疗放射性核素。WG3还收到了WG4的讨论项目。此项目解决了基于LEU的目标在欧洲使用的设计协调性的可行性。尽管这似乎是基础架构项目,但WG3从WG4接受了此项目,因为它对目标从HEU转换为LEU的特定含义。目标协调也应有助于确保产生的MO-99的长期供应和可用性。WG3感谢MO-99生产商必须实施目标协调。通过
摘要:分形几何始终为多个电磁设计问题提供解决方案。本文使用分形几何(例如希尔伯特曲线和摩尔曲线)来设计高效的高阻抗表面。现代通信设备有许多传感器需要进行无线通信。无线通信的关键组件是天线。平面微带贴片天线因其低轮廓、紧凑和良好的辐射特性而广受欢迎。微带天线的结构缺点是它们的表面波会在接地平面上传播。高阻抗表面 (HIS) 平面是最小化和消除表面波的突出解决方案。HIS 结构表现为有源 LC 滤波器,可抑制其谐振频率下的表面波。结构的谐振频率通过其 LC 等效或通过分析反射相位特性获得。这项工作提出了类似于蘑菇 HIS 和分形 HIS 的传统 HIS 结构,例如希尔伯特曲线和摩尔曲线 HIS。通过应用平面波照射的周期性边界条件,可以获得 HIS 反射相位特性。结果是根据反射相位角得出的。传统的蘑菇结构在给定的 10 mm × 10 mm 和 20 mm × 20 mm 尺寸下表现出窄带特性。这些结构有助于更换 6 GHz 以下贴片天线的 PEC 接地平面。还设计了希尔伯特和摩尔分形,它们具有多频带响应,可用于 L、S 和 C 波段应用。HIS 的另一个设计挑战是突起,这增加了设计的难度。这项工作还展示了有通孔和无通孔对反射相位特性的影响。响应显示,在 x 波段操作下,通孔的影响最小甚至没有显著影响。
摘要 该研究介绍了对孕妇进行放射治疗过程中涉及的物理和放射防护方面的问题,这些问题有助于胎儿的安全和发育。对已确诊妊娠并接受放射治疗的临床病例的研究进行了分析。该工作还通过文献中提出的实验测量和计算模拟,分析了考虑到胎儿区域的估计吸收剂量的不同治疗领域的具体剂量测定方案。讨论了 AAPM 报告 TG 36 中提出的胎儿辐射概念,重点关注使用适当的屏蔽和主要辐射场外的外周剂量分布的影响。研究并未就胎儿暴露的阈值剂量达成共识,其值在2至25 cGy之间变化,取决于妊娠期和腹部内的位置。巴西放射防护机构建议,怀孕期间受到职业照射的孕妇腹部所受辐射剂量当量不应超过2.0毫希沃特。测量结果表明,造成胎儿受照剂量增加的主要因素有:头部逸出的辐射、准直器的散射以及胎儿周围受照射区域组织的弥散。所分析的科学文章中所示的研究结果和实际临床情况表明,只要对胎儿的剂量低于指示的阈值,对孕妇进行放射治疗是可行的,这可以通过使用屏蔽和适当的辐射场配置来实现,并由专业物理学家在治疗前模拟治疗并进行正确的计划。这项工作旨在为怀孕患者放射治疗过程中的治疗决策提供支持,指出需要治疗时的风险和益处。
摘要:大量研究表明,体内超高剂量率“闪光”照射的正常组织的影响,并在体外报告了损害负担的减轻。朝向这一点,已经提出了两种关键的放射化学机制:自由基 - 激进重组(RRR)和瞬时氧耗竭(TOD),两者均提出导致诱导损伤水平降低。以前,我们报道了闪光灯在全血外周血淋巴细胞(WB-PBL)离体中引起较低水平的DNA链破裂损伤,但是我们的研究未能区分所涉及的机制。RRR的潜在结果是交联损伤的形成(特别是,如果有机自由基重新组合),而TOD的可能结果是闪光引起的诱导损害的更加无毒的预测。因此,当前研究的目的是通过彗星测定法对闪光灯诱导的损害进行损害,评估任何DNA交叉链接形成,作为RRR和/或缺氧DNA损伤形成的推定标志,作为TOD的指示标记,以确定对“闪光效应”有助于哪种机制的程度。闪光照射后,我们看不到任何交联形成的证据。但是,闪光照射会引起诱发损伤的更加缺氧,从而支持TOD机制。此外,用BSO预先进行的WB-PBL处理可消除闪光暴露介导的减少的链断裂伤害负担。总而言之,我们没有看到任何实验证据来支持RRR机制,导致闪光灯造成的损害负担减少。然而,观察闪光照射后更大的损害的缺氧证明,加上闪光介导的减少的链断裂伤害负担的BSO废除,为TOD提供了进一步的支持,使TOD成为减少伤害负担的驱动力,以及造成损坏的变化,造成了闪光的损害。
单元 - I太阳辐射原理:新的和可再生能源的作用和潜力,太阳能的环境影响,太阳的物理学,太阳常数,太阳能,外星和陆地太阳辐射,倾斜表面上的太阳辐射,用于测量太阳能辐射的仪器和阳光照射的仪器。太阳能收集:平板和集中收集器,集中收集器的分类,方向和热分析,高级收集器。单元风能:来源和电势,水平和垂直轴风车,性能特征,Betz标准生物质量:生物转化的原理,厌氧/有氧消化,生物气体消化类型,气体产量的类型,气体产量,bio-gas for Bio-gas,for Bio-gas for for for for for cook cook cook cook cook cook,cocking cook,ic.c.c. c.c. c。发动机操作和经济方面。单元III地热能:资源,井类型,利用能量的方法,印度的潜力。海洋能量:OTEC,原理利用,OTEC植物的设置,热力学周期。潮汐和波能量:潜力和转换技术,迷你杂志发电厂及其经济学。单元IV太阳能存储和应用:不同的方法,明智的,潜热和分层存储,太阳池。太阳能应用 - 太阳能加热 /冷却技术,太阳蒸馏和干燥,光伏能量转换。单元V直接能量转换:需要DEC,限制,DEC原理和不同类型的能量转换。教科书:1。可再生能源资源,Tiwari和Ghosal/ Narosa,第二版(2008年),新德里MC Graw Hill Company。2。非惯性能源,G.D.RAI,第四版(2009年),Khanna Publishers,新德里。参考:1。可再生能源,Twidell&Weir,第四版(2009年),塔塔·麦格劳·山(Tata McGraw Hill)教育私人有限公司,新德里。2。太阳能,S.P。Sukhatme,第三版(2010年),塔塔·麦格劳·希尔教育私人有限公司,新德里。
I.背景:物理特征作为生物识别技术 虽然人类拥有许多共同的物理特征,但他们在外表上并不是彼此的复制品。尽管人类各有不同,但共同的特征意味着可以进行比较。通过面部识别某人的能力一直是人类将彼此作为不同个体联系起来的最基本方式之一 [1]。识别某人实际上是人类视觉信息处理的一种形式 [2]。早在古代世界出现镜子之前(大约公元前 5 世纪,希腊人使用手镜梳妆 [3]),对一个人面部的描述总是由另一个人的目光决定,或者充其量是自己对自己在阳光照射的清水中倒影的描述。有些人甚至通过识别额头、鼻子、眼睛、眉毛、耳朵和脸颊上的独特特征,或通过一些明显的标记,如雀斑或胎记,获得昵称。这些都是记住个人的常用方式;不是为了歧视,而只是为了识别。在不超过 250 户的村庄,有可能了解并记住每个人 [4],特别是考虑到亲属具有相似和家庭特征。今天,我们将这些独特的身体特征称为生物识别 [5]。自 20 世纪初以来,我们一直使用指纹等生物识别技术来表示唯一性(例如,苏格兰场于 1900 年 6 月推出了 Galton-Henry 指纹分类系统 [6])。到 20 世纪 80 年代中期,美国执法部门已经实现了指纹自动匹配,到 20 世纪 90 年代,已有 500 个自动指纹识别系统 (AFIS) 用于定罪 [7]。AFIS 的实施标志着自动化首次用于交叉检查细节。目前,全球范围内已经使用高分辨率相机收集了数百万个细节信息,而不再使用传统的基于墨水的方法(例如,在印度,世界上最大的生物识别系统 Aadhaar 已系统地收集了超过 10 亿个指纹)。仅国际刑警组织的 AFIS 就拥有来自 17,000 多个犯罪现场标记的 220,000 个指纹记录,每天进行 3,000 次比对 [8]。同样,直到最近二十年,自动面部识别才成为可能并广泛用于各种应用,例如解锁手机、定位失踪人员、减少零售犯罪,甚至跟踪学生和工人出勤情况等 [9]。
人类历史上的大部分时间里,我们壮观的宇宙都是在夜空中的黑暗中可见的。但如今,随着人类的不断发展和居住地的缩小,不合适和无遮挡的户外照明也随之增多,这导致了光污染。您最近有没有在夜晚抬头仰望?或者尝试过带孩子看星星?宇宙正在消失,许多人已经因为城市夜光而消失了。为什么要在夜间使用户外照明?为了夜间看清事物,为了安全、保障、实用,以及为了营造迷人的夜间环境。但并非所有照明都是好的照明。不良的夜间照明有什么不利影响?城市夜光:我们不需要所有的灯光;向上照射的光线无助于我们在地面上的能见度。眩光:眩光会使您看不见眩光范围内的活动,而且它对能见度或安全性没有任何帮助。光侵入:许多照明装置给我们带来的困扰多于帮助。浪费的光线会照进邻居的院子或窗户。与噪音污染一样,我们不需要这种不良照明。能源浪费:在不需要照明的时间照亮不需要照明的区域,而且照明效率低下,这等于浪费我们的金钱。我们能做什么?道尔斯敦镇法规对所有户外照明都有要求。它必须有遮蔽以减少头顶的辉光,并向下照射,以免对交通或邻居造成滋扰。法规规定,“地块边界之外不得有可见的裸露或反射灯光。”一个常见的罪魁祸首是车库门上方或后草坪上方的裸露泛光灯泡。因此,请使用良好的照明。将灯光向下照射。使用时间控制。设计和安装照明以确保最大限度地减少眩光。使用适合任务的光量。能源效率将为您节省金钱。检查您自己的灯光。今晚打开户外照明出门。你能从街上看到你的灯泡吗?你的灯光是否照到了邻居的房产或他们的窗户上?如果是这样,有一些简单的方法可以纠正这种滋扰。可以提供帮助。有一些非常有用的网站提供有关如何解决这种污染形式的实用建议。这些网站提供屏蔽灯具供应商的链接、如何处理灯光造成滋扰的邻居的建议以及良好有效的照明设计技巧:www.darksky.org 和 www.POLCouncil.org 灯具:www.starrynightlights.com 。此外,您还可以在当地的电器供应商店购买“暗夜”认证的灯具。对于车库上方的泛光灯,请在 www.parshield.com 上寻找夹式 Parshield(R) 防眩光护罩,这是一种非常简单的补救措施。
已知抽象电离辐射会引起对造血系统的重大损害,这主要损害骨髓功能。叶酸在单碳代谢和各种细胞过程(包括DNA合成和修复)中起着至关重要的作用。本研究研究了叶酸参数对X射线照射的雄性兔子中血液学参数和骨髓组织学的潜在辐射保护作用。实验设计包括四个组:(1)对照,(2)补充叶酸,(3)X射线暴露,以及(4)补充叶酸和X射线的合并。血液学分析表明,X射线暴露后,白细胞(WBC),红细胞(RBC)和血小板(PLT)计数显着下降,表明辐射诱导的造血抑制。值得注意的是,补充叶酸部分恢复了这些参数,表明其在促进造血恢复中的作用。此外,对骨髓的组织学检查显示,叶酸处理的组的细胞性增加,进一步支持其针对辐射引起的骨髓抑制的保护作用。这些发现表明,补充叶酸可能会减轻电离辐射的不良造血作用,从而强调其作为辐射保护剂的潜力。关键字。放射保护,叶酸,血液学,骨髓,组织病理学。引入辐射引起的对造血系统的损害是电离辐射暴露的有据可查的结果,主要影响骨髓功能和外周血细胞计数。电离辐射会产生活性氧(ROS),导致氧化应激和细胞凋亡,尤其是在造血干细胞和祖细胞中[1,2]。叶酸是参与DNA合成和修复的必需B维生素,已假设具有辐射保护性能。急性辐射综合征(ARS)通常称为辐射疾病,是由于全身暴露于高剂量的电离辐射而发生的。这种情况的特征是生化参数严重中断,可能会对多个器官系统产生不利影响,包括造血[3],心血管[4]和胃肠道系统[5]。此外,大脑发育尤其容易受到电离辐射的影响,如大量研究所证明[6]。产前暴露于X-radiation与人类和实验动物的大脑的组织学变化有关,从而导致学习和记忆障碍[7]。造血干细胞以其高放射敏感性而闻名,在维持血细胞计数中起着至关重要的作用,这仍然是评估疾病状况的关键诊断工具。长时间暴露于X射线会导致外周血细胞谱发生显着改变,包括由于血小板水平降低而导致中性粒细胞计数,严重的淋巴细胞减少症和血小板减少症。电离辐射通常会抑制骨髓活性,导致外周循环中血细胞的产生降低,尽管其对大多数细胞或组织的直接影响相对较少[8]。在Geng等人的一项研究中。在Geng等人的一项研究中。全身辐射的全身作用主要在血液学,胃肠道和脑血管系统中表现出来,从而导致广泛的功能障碍和器官损伤[9,10]。这些见解强调了电离辐射对细胞和全身水平的广泛而复杂的生物学影响。造血干细胞高度放射敏感,在监测疾病状况中起着至关重要的作用,血小板计数是可靠的诊断指标。暴露于0.5至1 Gy的电离辐射剂量可能会导致外周血细胞谱的显着变化,包括中性粒细胞计数升高,严重的淋巴细胞减少症和血小板水平降低(血小板减少症)。淋巴细胞特别容易受到辐射诱导的损伤,即使在低剂量为0.05-0.15 Gy的情况下也经历了相间死亡。电离辐射抑制骨髓活性,导致外周血细胞产生的减少,尽管它对大多数细胞或组织造成了最小的直接伤害[8]。辐射的全身效应扩展到各种器官系统,包括胃肠道,脑和循环系统,导致了广泛的器官功能障碍[9,10]。辐射诱导的骨髓抑制和降低的外周血计数突出了造血恢复在治疗辐射损伤中的重要性[11]。Li及其同事(2014)[12]的研究表明,辐射不仅减少造血细胞数量,而且还刺激其余细胞的激活。[8],暴露于