6.3.14 对于大型物体或一组间距很近的物体,应至少在物体相对于障碍物限制面最高的点或边缘上显示顶灯,以指示物体的大致轮廓和范围。如果两个或多个边缘的高度相同,则应标出最靠近着陆区的边缘。当使用低强度灯时,其纵向间距不得超过 45 米(150 英尺)。当使用中强度灯时,其纵向间距不得超过 900 米(2950 英尺)
OIDA 版权所有 2002 光电子产业发展协会 本报告中包含的所有数据均为 OIDA 所有,未经光电子产业发展协会事先书面许可,不得以原件或复制形式分发给客户内部组织以外的任何人。 出版者: 光电子产业发展协会 1133 Connecticut Avenue, NW, Suite 600 Washington, DC 20036 电话:(202) 785-4426 传真:(202) 785-4428 互联网:http://www.oida.org 赞助者: 光电子产业发展协会 (OIDA) 国家电气制造商协会 (NEMA) 能源部 – 建筑技术、州和社区计划办公室 (DOE-BTS) 编辑:Jeff Y. Tsao Sandia 国家实验室 P.O. Box 5800 Albuquerque, NM 87185-0601 电话:(505) 844-7092 传真:(505) 844-3211 电子邮件:jytsao@sandia.gov 互联网:http://lighting.sandia.gov
符合 TDLR 采用的 NEC 最新版本、当地公用事业要求、本条款的要求以及以下条款的相关要求。 项目 104,“混凝土拆除” 项目 400,“结构的开挖和回填” 项目 416,“钻孔井基础” 项目 421,“水硬性水泥混凝土” 项目 431,“气压浇注混凝土” 项目 432,“护堤石” 项目 440,“混凝土加固” 项目 445,“镀锌” 项目 449,“锚栓” 项目 450,“栏杆” 项目 476,“顶进、钻孔或隧道开挖管道或箱体” 项目 610,“道路照明组件” 项目613,“高杆照明灯杆” 项目 614,“高杆照明组件” 项目 616,“照明系统性能测试” 项目 618,“导管” 项目 620,“电导体” 项目 621,“托盘电缆” 特殊规范,“管道电缆” 项目 624,“接地箱” 项目 625,“镀锌钢丝绳” 项目 627,“处理过的木杆” 项目 628,“电气服务” 项目 636,“标志” 项目 656,“交通控制设备基础” 项目680,“高速公路交通信号灯” 项目 682,“车辆和行人信号头” 项目 684,“交通信号电缆” 项目 685,“路边闪光灯灯组件” 项目 686,“交通信号杆组件” 项目 687,“基座杆组件” 项目 688,“行人和车辆检测器”
puro Lighting是所有商业行业中紫罗兰色国防的独家合作伙伴,向美国和加拿大的客户,代表和分销商提供销售,可用性,服务和信息。我们继续与Violet Defense一起作为技术和创新合作伙伴,为我们的行业和客户创建新产品和定制应用程序。和紫罗兰国防技术伙伴关系
展望未来,我们需要对夜间灯光的积极和消极影响进行更多研究,以便引导用户在不同环境下实现人性需求与环境影响之间的最佳平衡。LED 照明可提供精确的光学分布和一系列光谱功率分布。我们需要了解最佳的人类安全和可见性选择,同时消除无用照明并尽量减少必要光的总量,以减少对环境的影响。显然,通过有意识的设计,可以同时减少夜间使用的光总量,同时提高户外照明的安全性和有效性。
在未来几年中,用于科学目的的激光束将越来越多地用于天文望远镜。尽管望远镜站点附近的空中交通量通常极低,但必须解决同时发生的飞机意外照明风险(Wizinowich 等人1998)。正在建造一个用于近红外校正的自适应光学 (AO) 系统(Lloyd-Hart 等人1998),以部署在亚利桑那州南部霍普金斯山的一台新的 6.5 米望远镜(多镜面望远镜 (MMT) 转换)上(West 等人1997)。波前像差将通过参考沿望远镜光轴投射的 10 W 激光束产生的信标来测量(Jacobsen 等人1994)。激光调谐到原子钠的 D2 线,照亮中间层的钠原子。共振背散射光在望远镜上显示为人造“星”。旧的六镜配置中的 MMT 现已拆除,6.5 m 的施工正在快速进行,预计将于 1999 年秋季首次亮相。新的 AO 系统预计将在几个月后首次亮相。然而,在过去三年中,MMT 一直充当原型 AO 系统的试验台,包括一台 3 W 激光器(Ge 等人1998)。在此期间,我们制定了确保望远镜附近空中交通安全的程序。在激光活动开始前,通常会发布飞行员通知 (NOTAM)。激光从未指向 45° 天顶角以下。当预计或正在进行激光活动时,指定的激光安全官 (LSO) 必须始终在场,并且现场的专用电话线确保当地联邦航空管理局人员可以立即联系 LSO。最重要的是,我们开发了一种自动系统,旨在检测飞机并在任何潜在照明之前关闭激光。
新的技术能力往往伴随着意想不到的挑战。大多数白光 LED 照明都含有大量潜在有害蓝光。IDA 于 2010 年发布了一份报告,详细说明了已知和疑似富含蓝光的白光光源的危害。[i] 多年来,科学证据逐渐形成其结论。众所周知,富含蓝光的白光光源会增加眩光并损害人类视力,尤其是对老年人的眼睛。[ii]、[iii] 这些灯光会给驾驶员和行人带来潜在的道路安全问题。在自然环境中,研究表明,如果在错误的时间接触到夜间的蓝光,会对野生动物的行为和繁殖产生不利影响。[iv]、[v] 这种情况在城市尤其如此,因为城市通常是鸟类等迁徙物种的中途停留站。
针对光谱成像技术在卫星遥感、生物医学诊断、海洋探测与救援、农林监测与分类、军事伪装识别等方面的应用需求,本文采用532和650 nm激光器作为光源,利用多光谱强度相关成像设备——基于稀疏性约束鬼成像(GISC)的快照式光谱相机实现目标的精确识别。本文阐述了快照式GISC光谱成像原理,并开展了基于主动激光照明的GISC光谱成像目标识别技术实验研究工作。实验结果表明,采用532 nm激光作为光源照射目标物体可以准确识别绿色目标字母“I”;采用650 nm激光作为光源照射目标物体可以准确识别红色目标字母“Q”。并给出了GISC光谱相机在446~698nm波长范围内单次曝光获取的彩色目标“QIT”的光谱成像结果,包括伪彩色图和彩色融合图。为了进一步说明实验的可行性,对重建图像的光谱分布进行了分析,具有重要的实际意义和工程价值。
• 多个静态照明场景 • 场景选择由单个触发器或传感器激活(实时 - “慢速”) • 监控来自单个传感器和活动场景的数据 • (本地) 系统内的双向通信
简单的基于检测的LIDAR包括将信号状态发送到可能包含目标对象或可能不包含目标对象的环境中,然后检测可能的反射光。反射到检测器的任何光都将提供有关可能存在的目标对象的信息。但是,当光的状态平均光子数较低并且存在高环境背景噪声时,对物体的存在的准确推断很具有挑战性。这个问题等于区分两个状态,一种包含反射的信号和噪声,另一个只有噪声,因此可以用量子状态歧视表示。我们通过试图区分我们检测器系统中可能的状态来确定对象是否存在。这些状态越明显,可以识别或排除对象的存在越快。量子照明利用非经典相关的光学模式作为执行对象检测的光源,由于非经典量子状态的可区分性增强,比经典光源相比具有基本优势。量子照明因此,即使在嘈杂的量子通道中,量子照明也可以提高目标歧视,但目前尚不清楚实现最大敏感性增强所需的确切测量方案。5该方案可以通过各种方式实施。如果在局部存储一种模式(常规“惰轮”),直到可以组合检测到两个模式以获得检测优势,则可以在检测器上返回信号。,如果需要干扰并因此在惰轮和信号梁之间存在相位锁定,那么这是具有挑战性的,因此在光学频率下它在实验室外面是不切实际的。一种更实用的方法需要在本地测量惰轮,然后使用此测量来调节信号光束,该信号光束被发送以询问目标。希望条件信号梁具有增强的检测概率。量子照明已被证明比经典照明具有实验检测的优势,从实验上进行6和理论上,7当信号和惰轮都使用简单检测时。