电池安全设计非常重要,要考虑从单个锂离子电池到宏观系统的水平。在宏观层面上,一个单元格中的故障会导致热失控的传播,并迅速将整个电池组放在火上。可能影响传播结果的因素,例如细胞模型/化学和电连接,在这里使用测量组合进行了研究。进行了几项滥用测试,结合了两个不同的细胞模型(Molicel P42A和LG M50,均为21700)和平行连接(每次配置16个测试)。总体而言,从32次进行的测试中测量了56%的传播结果,最低温度为150℃以启动传播,并且在123 s中发生了最快的传播。温度测量在串联连接的细胞中较高,引发了对细胞化学的讨论以及对此作用的内部耐药性。串联和平行连接中热失控期间电流流的差异,以及如何进一步讨论这会影响温度演化。X射线射线照相的时空映射使我们得出电池内部热失控演变的速度,并表明串联连接的电池,尤其是P42A的发生速度更快。进一步观察到,仅在P42AS中仅在相应的指甲穿过的细胞中发生了跨侧壁行为,例如温度诱导的漏洞和压力诱导的破裂。
⋄Artem Boichuk,tau(正在进行)。⋄Matiaspaatelainen,tau(正在进行)。⋄Henning Meteling,Tau(正在进行)。samivesamäki,tau(正在进行)。⋄tau(正在进行)的Roshan Nsare。⋄Yasaman Nemati,Tau(正在进行)。⋄Zixuan Deng,Tau(正在进行)。 ⋄玛丽·伊索米基(Mariisomäki),tau(正在进行)。 ⋄tau(正在进行)的Antti Siiskonen。 ⋄亚历克斯·伯丁(Alex Berdin),tau(毕业生 2024年4月)。 论文标题:“偶氮纤维中的全息记录”。 ⋄金·昆兹(Kim Kuntze),tau(毕业生 2023年8月)。 论文标题:“红光照相的策略”。 suvi holmstedt,tau(毕业生 2021年9月)。 论文标题:“基于生物量的com磅转换为添加值化学物质”。 ⋄Markuslahikainen,tau(毕业生 2021年10月)。 论文标题:“适用于软机器人的光响应聚合物的高级控制策略”。 ⋄jagadish salunke,tau(grad。 2021年1月)。 论文标题:“低成本势噻嗪和基于吡啶的孔孔传输材料,用于卤化物钙钛矿太阳能电池”。 ⋄ocies wani,tau(毕业生 2019年5月)。 论文标题:“来自液晶网络的生物启发的轻机器人”。 ⋄MikkoPoutanen,Aalto(毕业生 2018年9月)。 论文标题:“功能软材料中光和自组装的相互作用 - 从照片对照到光子结构”。 ⋄Mattivirkki,tut(毕业生 2017年10月)。 论文标题:“光电批准光学非线性的超分子材料”。 2013年6月)。⋄Zixuan Deng,Tau(正在进行)。⋄玛丽·伊索米基(Mariisomäki),tau(正在进行)。⋄tau(正在进行)的Antti Siiskonen。⋄亚历克斯·伯丁(Alex Berdin),tau(毕业生2024年4月)。论文标题:“偶氮纤维中的全息记录”。⋄金·昆兹(Kim Kuntze),tau(毕业生2023年8月)。论文标题:“红光照相的策略”。suvi holmstedt,tau(毕业生2021年9月)。论文标题:“基于生物量的com磅转换为添加值化学物质”。⋄Markuslahikainen,tau(毕业生2021年10月)。论文标题:“适用于软机器人的光响应聚合物的高级控制策略”。⋄jagadish salunke,tau(grad。2021年1月)。论文标题:“低成本势噻嗪和基于吡啶的孔孔传输材料,用于卤化物钙钛矿太阳能电池”。⋄ocies wani,tau(毕业生2019年5月)。论文标题:“来自液晶网络的生物启发的轻机器人”。⋄MikkoPoutanen,Aalto(毕业生2018年9月)。论文标题:“功能软材料中光和自组装的相互作用 - 从照片对照到光子结构”。⋄Mattivirkki,tut(毕业生2017年10月)。论文标题:“光电批准光学非线性的超分子材料”。2013年6月)。⋄詹妮·科斯克拉(Jenni Koskela),阿尔托(Grad。2015年1月)。论文标题:“含有偶氮苯的材料中的轻型动作:从超分子设计到新应用”。⋄jaana vapaavuori,aalto(Grad。论文标题:“通过超分子功能化的有效光反应偶氮苯材料的设计”。
“电子显微镜视角下创新材料高级表征”初级教授职位 Institut Neel CNRS,法国格勒诺布尔 CNRS 预计将在 2024 年上半年开放一个初级教授职位,在 4 个最近获得最先进透射电子显微镜 (TEM) 的实验室之间的竞争中,包括 Institut Néel。因此,Institut Néel 正在寻找一位优秀且积极主动的候选人来加强对 TEM 高级表征的研究活动。Institut Neel 拥有一个 Jeol NEOARM,它在光谱、电场和磁场测量方面提供了特殊的可能性,可以与不同的原位选项相结合(加热、冷却和电偏置已经可用),实验室希望发展其在光谱方面的活动,同时也发展原位/原位分析(催化、生长、液体介质、电池运行等)。 NEOARM 配备了冷 FEG,可在 60 至 200 kV 的电压下运行,并配备了 STEM 像差校正器、多个 STEM 探测器(包括用于差分相衬的 8 段探测器、广角 EDX 探测器、用于电子能量损失光谱的 GIF 连续光谱仪、用于电子全息照相的双棱镜、Gatan Oneview 相机、使用 Medipix 3 技术的直接电子探测器、电子束感应电流以及电子束进动。提供多个样品架,可进行断层扫描、倾斜旋转、在氮气和氦气(正在开发中)温度下冷却,以及加热和原位电偏置。
偶氮苯分子开关通过E和Z异构体之间的光异构化广泛用于感光材料的特性和细胞培养中的生物学活性。但是,由于人口拍照不完整,因此它们的动态财产控制范围通常很小。而且由于它们不能用红色/NIR光进行操作,因此通常不适用于深层组织。在这里,我们在活组织中> 700 nm> 700 nm,证明了一种有效的偶氮烯和谷氨酸受体活性的单光子光控制的通用方法。我们使用红色/NIR发色团辅助机进行分子内能量转移到生物活性偶氮烯,该偶氮烯驱动了快速散装Z→E同源化,甚至达到> 97%的完整性。辅助/偶氮苯二元组允许使用光子效率进行> 700 nm的照相,甚至可以比紫外线区域中直接偶氮苯E→Z同源化的光子效率更高;它们具有生物相容性和光稳定性。至关重要的是,它们的性能属性是固有的,即基于辅助的分子内切换将在任何稀释下进行相同的性能,并且不会受到生物分布的影响。我们表明,这些二元组可以由大多数偶氮苯系统(大多数辅助发色团)直接创建,而无需棘手的分子重新设计或重新计算。在概述了可以指导其更广泛采用的一些基于辅助的照相的规则之后,我们通过使用Dyads来首次演示对生物学活性,细胞培养和完整脑组织的首次演示。
糖尿病视网膜病变 (DR) 是全球劳动年龄人口失明和视力障碍的主要原因 (1)。大量研究表明,及早发现和及时治疗 DR 可以防止 90% 以上的糖尿病患者出现严重的视力丧失 (2,3)。然而,由于视网膜专家严重短缺,欠发达国家很大一部分患者无法接受协议推荐的年度眼科检查 (4,5)。面对全球糖尿病发病率的快速上升 (6),迫切需要一种新的糖尿病管理方法。已经证实,在接受眼底照相阅读培训后,非眼科医生在发现 DR 方面与眼科医生一样高度敏感 (7)。对非眼科阅读人员的培训似乎是他们融入糖尿病眼部筛查的重要一步。准确的 DR 临床分期是选择最合适的个性化治疗的先决条件。基于彩色眼底照相的早期治疗糖尿病视网膜病变研究 (ETDRS) 目前已成为 DR 分级的金标准 (8)。尽管如此,由于实际病例的个体差异,图像识别的训练过程具有很大的实施复杂性。为了获得在日常临床实践中确立诊断的技能,受训人员需要从大量的图像中学习以提取图像特征。但由于资源、人员和资金的限制,培训机会可能会被压缩 (9)。此外,即使是高素质的教师也可能存在主观性,并且在读者内部和读者之间的诊断方面也存在差异 (10)。传统的眼科学课程通常无法提供大量标准化案例用于培训。近年来,人工智能 (AI) 在主要眼部疾病的诊断和预测方面表现出明显优势,特别是那些涉及图像分析的疾病 (11-13)。使用人工智能的自动视网膜图像筛查系统的最新进展表明,在 DR 评估中可以达到专家级别的准确度(10、14)。大数据和人工智能技术在教育环境中的实施也显示出提高教学效率的巨大潜力(15)。从大数据中提取的重要信息有助于缩短培训时间并改善学生的学习曲线。然而,人工智能作为考试系统和/或机器人教师为医学生和受训人员提供个性化教育的潜力需要进一步评估。在本研究中,我们开发了一种基于人工智能的自动 DR 评分系统,配备了人工智能驱动的诊断算法,并验证了其作为培训非眼科医生进行 DR 人工评分的教学和学习工具的作用。
BMsc 医学成像课程描述(核心课程)MI 201:医学成像简介秋季。学分,2 小时。本课程向学生介绍医学成像的原理和实践。强调放射技师的职能及其与医疗团队的关系。学生还将了解医院环境和医疗保健系统。MI 203:医学术语秋季。学分,1 小时。本课程向学生介绍医学术语。重点介绍与诊断放射学相关的术语。MI 211a、b、c:患者护理 I、II 和 III 秋季、春季和春季。学分,9 小时。先决条件:MI 211a 先于 MI 211b 先于 MI 211c。强调基本患者护理需求以及与患者、同事、医生和医疗团队其他成员的人际关系。包括对儿科患者和老年患者进行放射照相的基本原理。介绍了保密性和法医考虑因素,包括专业责任、患者记录和专业指南。MI 211c 侧重于高级患者护理概念,包括心脏监测和静脉穿刺。MI 213a、b、c、d、e:医学成像程序 I、II、III、IV 和 V 秋季、春季、夏季、秋季和春季。学分,共十三个小时。先决条件:MI 213a 之前是 MI 213b 之前是 MI 213c 之前是 MI 213d 之前是 MI 213e。讲座、在线和实验课程,强调诊断放射学中使用的常规和专门程序。MI 221a、b、c:解剖学和生理学 I、II 和 III 秋季、春季和秋季。学分,共九个小时。先决条件:MI 221a 之前是 MI 221b 之前是 MI 221c。包括人体解剖学,强调身体组织和系统。重点放在骨骼系统和其他与成像密切相关的系统上。MI 221c 的重点是横断面解剖学。所有课程都强调放射解剖学。MI 261 a、b:临床实习秋季和春季。学分,共 6 小时。先决条件:MI 261b 之前的 MI 261a。一系列课程专为进入医学成像领域的人士设计,以熟悉医学成像和医学领域的理论、原则、道德和伦理的实际应用。学生将从观察到参与一般诊断检查。MI 301:医学和外科疾病调查夏季。学分,3 小时。先决条件:MI 203、MI 221 ac。概述了常见疾病,旨在让技术人员了解患者疾病的性质。重点放在常见病理的放射学表现上。将考虑病理对放射学质量和诊断放射学程序的影响。MI 321a、b:成像物理原理 I 和 II 春季和夏季。学分,共 6 小时。先决条件:MI 321a 先于 MI 321b。