波音公司还致力于通过全面的起飞测试来减少机尾撞击,这是任何新飞机项目认证的一部分。在飞行测试期间,起飞测试条件是专门为研究早期抬轮、快速抬轮、着陆时无拉尾和长拉尾的影响而设计的。在此测试期间,将根据认证标准为飞机的设计操作用途建立可接受的裕度。在所有情况下,波音商用飞机都达到或超过了起飞和着陆以及侧风起飞和着陆的设计认证标准(见图 1)。发动机熄火起飞和着陆的标准也经过评估(见图 2)。
摘要。有人认为,由于飞机性能固有的随机变化,有必要采用随机方法进行适航性分析。然后表明,机队服务中任何性能变量的历史最好被视为“随机校正过程”,其特点是缓慢恶化,大修时迅速改善。特别考虑飞机发动机熄火起飞爬升性能,提出了一个模型,该模型考虑了由于机身、发动机和螺旋桨(如果有)的恶化而导致的梯度变化、大修的频率和有效性,以及在任何飞行中实现的梯度与飞机真实能力的偏差。在分析大修的影响时,需要区分整改维护和更换维护。在提出的模型中,共有 14 个参数控制着机队历史中实现的梯度的概率分布,从而控制着起飞爬升期间的事故率。
这项关于 JT9D、CF6 和 PT6 飞机发动机可靠性的研究是对 JT8D 发动机研究的后续研究,该研究发表在联邦航空管理局 (FAA) 技术中心最终报告 DOT/FAA/CT-91/10 中。与 JT8D 发动机研究一样,这项研究对 JT9D、CF6 和 PT6 涡轮飞机发动机在 1988 年 2 月至 1991 年 1 月的 36 个月期间的飞行中停机和计划外拆卸率进行了趋势分析。与上一份报告一样,该方法是每月审查哪些航空公司在飞行中停机和计划外发动机拆卸方面持续超过标准偏差规范,然后检查这些航空公司报告的发动机部件故障。发动机部件故障分为以下几类:轴承、翼型、机壳、控制装置和附件、燃油/油系统和其他(未显示趋势)。对于 JT9D、CF6 和 PT6 发动机的这项研究,控制装置和附件通常会导致最多的飞行中熄火、压缩机失速和发动机停机。除了对 JT9D、CF6 和 PT6 发动机进行的精算分析和部件故障模式趋势分析外,还对 JT9D 和 CF6 发动机机壳应用了为 JT8D 发动机开发的检查程序。
这项关于 JT9D、CF6 和 PT6 飞机发动机可靠性的研究是对 JT8D 发动机研究的后续研究,该研究发表在联邦航空管理局 (FAA) 技术中心最终报告 DOT/FAA/CT-91/10 中。与 JT8D 发动机研究一样,这项研究对 JT9D、CF6 和 PT6 涡轮飞机发动机在 1988 年 2 月至 1991 年 1 月的 36 个月期间的飞行中停机和计划外拆卸率进行了趋势分析。与上一份报告一样,该方法是每月审查哪些航空公司在飞行中停机和计划外发动机拆卸方面持续超过标准偏差规范,然后检查这些航空公司报告的发动机部件故障。发动机部件故障分为以下几类:轴承、翼型、机壳、控制装置和附件、燃油/油系统和其他(未显示趋势)。对于 JT9D、CF6 和 PT6 发动机的这项研究,控制装置和附件通常会导致最多的飞行中熄火、压缩机失速和发动机停机。除了对 JT9D、CF6 和 PT6 发动机进行的精算分析和部件故障模式趋势分析外,还对 JT9D 和 CF6 发动机机壳应用了为 JT8D 发动机开发的检查程序。
日本内阁府在2014财年至2018财年的5年期间,在跨部委战略创新促进计划 (SIP) 中组织了一项重大项目“创新燃烧技术”。演讲介绍了汽油燃烧团队与28所大学合作对汽油发动机超稀薄燃烧概念的研究和开发。为了使汽油SI发动机的热效率达到50%,稀薄燃烧操作是通过低温燃烧减少热损失来提高热效率的有效技术之一。单缸SIP原型发动机采用过量空气比超过2.0的超稀薄混合气,以将燃烧温度降至2,000K以下,并减少热损失和NOx排放。然而,由于层流火焰速度降低导致燃烧持续时间延长,以及循环间燃烧波动和/或熄火增加,成为实现超稀薄燃烧发动机的障碍。因此,原型发动机设计为产生25m/s的高强度滚流,并利用滚流塌陷产生的湍流加速燃烧的效果。该发动机的火花点火系统比传统发动机的放电持续时间长10倍,放电能量更高,实现了稳定的循环点火和燃烧。
这项关于 JT9D、CF6 和 PT6 飞机发动机可靠性的研究是对 JT8D 发动机研究的后续研究,该研究发表在联邦航空管理局 (FAA) 技术中心最终报告 DOT/FAA/CT-91/10 中。与 JT8D 发动机研究一样,这项研究对 JT9D、CF6 和 PT6 涡轮飞机发动机在 1988 年 2 月至 1991 年 1 月的 36 个月期间的飞行中停机和计划外拆卸率进行了趋势分析。与上一份报告一样,该方法是每月审查哪些航空公司在飞行中停机和计划外发动机拆卸方面持续超过标准偏差规范,然后检查这些航空公司报告的发动机部件故障。发动机部件故障分为以下几类:轴承、翼型、机壳、控制装置和附件、燃油/油系统和其他(未显示趋势)。对于 JT9D、CF6 和 PT6 发动机的这项研究,控制装置和附件通常会导致最多的飞行中熄火、压缩机失速和发动机停机。除了对 JT9D、CF6 和 PT6 发动机进行的精算分析和部件故障模式趋势分析外,还对 JT9D 和 CF6 发动机机壳应用了为 JT8D 发动机开发的检查程序。
5.0 无控制技术 ...............5-1 x 5.1 湿式控制 .................5-5 5.1.1 过程描述 ........5-5 5.1.2 湿控制的适用性 ....5-8 5.1.3 影响湿式控制性能的因素 ...........5-8 5.1.4 使用 x 湿式控制可实现的 NO 排放水平 ...........5-11 5.1.5 湿式控制对 CO 和 HC 排放的影响 ............5-28 5.1.6 湿式控制对燃气轮机性能的影响 ............5-33 5.1.7 湿式控制对燃气轮机维护的影响 ............5-33 5.2 燃烧控制 ............5-36 5.2.1 稀薄燃烧和减少燃烧室停留时间 ...........5-36 5.2.2 贫油预混燃烧室 ......5-38 5.2.3 浓/熄火/贫油燃烧 .....5-59 5.3 选择性催化还原 .......5-63 5.3.1 流程描述 ..........5-63 5.3.2 SCR 对燃气轮机的适用性 5-65 5.3.3 影响 SCR 性能的因素 ..5-72 5.3.4 使用 SCR 可实现的 NO 减排 x 效率 .......5-73 5.3.5 SCR 的处置注意事项 ...5-73 5.4 与 SCR 结合使用的控件 ...5-74 5.5 在 HRSG 应用中添加管道燃烧器的影响 ..............5-77 5.6 替代燃料 ............5-83 5.6.1 煤制气 ...。。。。。。。5-83 5.6.2 甲醇。。。。。。。。。。。。。。5-84 5.7 选择性非催化还原 ......5-87 5.8 催化燃烧 ...........5-88 5.8.1 过程描述 .........5-88 5.8.2 适用性 ...........5-88 5.8.3 开发状态 .........5-88 5.9 海上石油平台应用 .....5-91 5.10 第 5 章参考资料 ......。。。5-92