基于对Cu(TFSI)2(BPP)2和Cu(MS 2 N)2(BPP)2或Cu(TFSI)2(BPE)2的讨论,CU(TFSI)2(TFSI)2(BPP)2(BPP)2(T M = 196°C)和CU(BF 4)2(BPP 4)2(BPP)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)2(bpp)。对于e离子,Cu(BF 4)2(BPP)2的e离子比Cu(TFSI)2(BPP)2更大,因为BF 4-尺寸较小。另一方面,对于Cu(TFSI)2(BPP)2, 9 E链链为33 kJ mol -1(表2)。 由于E离子和E链链的相反趋势,不可能要求δHFUS较大或更小的关系。 基于E链链值的S KIN ,Cu(TFSI)2(BPP)2的晶体中的S亲属预计将较小。 在s列中,tfsi-可以采用多个9 E链链为33 kJ mol -1(表2)。由于E离子和E链链的相反趋势,不可能要求δHFUS较大或更小的关系。基于E链链值的S KIN ,Cu(TFSI)2(BPP)2的晶体中的S亲属预计将较小。 在s列中,tfsi-可以采用多个,Cu(TFSI)2(BPP)2的晶体中的S亲属预计将较小。在s列中,tfsi-可以采用多个
摘要:尽管硫磺聚合物承诺具有独特的特性,但其受控的合成,尤其是在复杂且功能性架构方面,仍然具有挑战性。在这里,我们表明氧乙烷和苯基异硫氰酸苯二氮化的共聚物选择性地产生多硫二酰二酰二氧化物,作为一类新的含有分子量分布的硫酸盐,具有窄的分子量分布(m n = 5-80 kg/mol,用 ^ 1.2; mm n,max = 124 kg/mol)和高熔点;五个;氧乙烷和异硫氰酸盐的取代基模式。自核实验表明,苯基取代基,未取代聚合物主链的存在以及动力学控制的链接选择性是最大化熔点的关键因素。对宏链转移剂的耐受性增加和控制的传播允许合成双层晶体和两亲性二嵌段共聚物,可以将其组装成胶束和蠕虫样的结构中,并与水中的无律核心。相比之下,乙醇中结晶驱动的自组装会产生圆柱形胶束或血小板。
我们建议使用量子信息概念来表征高温下非微扰束缚态的热诱导熔化。我们应用张量网络在伊辛量子场论的静态和动态环境中研究这一想法,其中束缚态是受限的费米子对——介子。介子熔化的平衡特征是在热态第二 R'enyi 熵的温度依赖性中确定的,该熵从指数到幂律缩放不等。在非平衡状态下,我们将热淬火后反射熵从振荡到线性增长行为的转变确定为相关特征。这些分析应用范围更广,为描述量子多体和高能物理中的介质内介子现象带来了新方法。
紫外纳秒激光退火 (LA) 是一种强大的工具,需要严格限制的加热和熔化。在半导体技术中,随着所提出的集成方案的复杂性不断增加,LA 的重要性也随之增加。优化 LA 工艺以及实验设计具有挑战性,尤其是当涉及具有各种形状和相的复杂 3D 纳米结构系统时。在这种情况下,需要对激光熔化进行可靠的模拟,以优化工艺参数并减少实验测试次数。这产生了虚拟实验设计 (DoE)。𝑆𝑖 1− 𝑥 𝐺𝑒 𝑥 合金如今因其与硅器件的兼容性而被使用,从而能够设计应变、载流子迁移率和带隙等特性。在这项工作中,用有限元法/相场方法模拟了松弛和应变𝑆𝑖 1− 𝑥 𝐺𝑒 𝑥 的激光熔化过程。具体来说,我们使用实验数据校准了合金结晶相和液相的介电函数。我们强调了重现不同聚集状态下空气与材料界面的精确反射率的重要性,以正确模拟该过程。我们间接发现了熔体硅锗光学行为的有趣特征。
摘要最近,已广泛研究了摩擦电纳米生成器(TENG)以开发柔性和可穿戴电子产品。在Teng修饰的各种方法中,熔化近场直接写作是制造固定液体Teng的新方法。在这里,将带有传统聚合物引入电纺PCL,以制造复合固体底层底层,然后选择水,二甲基酮和增益作为液体互动层。在本文中,比较了固体底物效应,温度梯度效应和液体底物效应。在本文中采用了Teng的独立模型,并且PCL-PI复合固体底层底层固体层产生的电荷比原始的底层高10倍以上,显示出高电荷产生能力融化近场直接直接的书面微纤维。此外,将讨论详细的调查,如何获得高电路电压和短路电流。