激光粉末床熔合中的功能分级材料成分有可能制造具有定制性能的复杂组件。实现这一目标的挑战在于,当前的激光粉末床熔合机技术仅设计用于处理粉末状原料。本研究介绍了一种用于激光粉末床熔合的多原料材料打印方法。利用胶体雾化,在激光粉末床熔合过程中,碳化钨纳米颗粒成功沉积在 316L 不锈钢粉末床上。通过这种方式,在惰性处理室气氛下,一定量的碳化钨纳米颗粒均匀分散在粉末床上。结果,用这种方法打印的样品强度有所增加。同样,胶体介质在产生的微观结构中也起着重要作用。它导致形成一致稳定的熔池和坚固的晶体结构。给出了成功分散大量纳米颗粒的建议。此外,还介绍并讨论了材料雾化在激光粉末床熔合中的应用前景。
Holden Hyer 中佛罗里达大学材料科学与工程系,佛罗里达州奥兰多市 Le Zhou 中佛罗里达大学材料科学与工程系,佛罗里达州奥兰多市 中佛罗里达大学先进材料加工与分析中心,佛罗里达州奥兰多市 George Benson 中佛罗里达大学材料科学与工程系,佛罗里达州奥兰多市 Brandon McWilliams 美国陆军研究实验室武器与材料研究理事会,马里兰州阿伯丁试验场 Kyu Cho 美国陆军研究实验室武器与材料研究理事会,马里兰州阿伯丁试验场 Yongho Sohn 中佛罗里达大学材料科学与工程系,佛罗里达州奥兰多市 中佛罗里达大学先进材料加工与分析中心,佛罗里达州奥兰多市
阵列中每台激光器的热通量都会根据其内部间距对熔池的整体形状/尺寸产生影响,即基于叠加原理和每台激光器温度场之间的热串扰。通常,由于热量分布在更大的表面积上,随着内部间距的增加,宽度会增加,但深度则呈现相反的趋势,即热量渗透到粉末床中会减少。此外,熔池尺寸(深度和宽度)
Brian K. Paul ac 、Kijoon Lee ac 、Yujuan He b 、Milad Ghayoor ac 、Chih-hung Chang b 和 Somayeh Pasebani ac a 俄勒冈州立大学机械、工业与制造工程学院,俄勒冈州科瓦利斯,97330 b 俄勒冈州立大学化学、生物与环境工程学院,俄勒冈州科瓦利斯,97330 c 俄勒冈州立大学先进技术与制造研究所 (ATAMI),俄勒冈州科瓦利斯,97330 提交人 Neil Duffie (1),麦迪逊,美国 本文讨论了一种新型混合方法的基本原理,该方法使用改进的激光粉末床熔合 (LPBF) 机器合成氧化物弥散强化 (ODS) 304L 不锈钢 (SS) 合金。此前,ODS 金属基复合材料是通过球磨由 LPBF 生产出来的,但这种方法的规模化成本很高。在这里,我们通过在激光转化和固结之前将前体化学物质喷射到 SS 基材上,选择性地将氧化钇纳米颗粒掺杂到 SS 基材中。这种新合金表现出良好的室温机械性能。使用电子显微镜、能量色散光谱和电子背散射衍射研究微观结构。关键词:增材制造、金属基复合材料、不锈钢
由于时间和成本的缘故,后处理铣削操作通常不切实际,可能需要专门的工具。为了减少对特殊工具和额外加工的需求,开发了混合增材制造系统,以顺序方式打印和铣削,以在一个机器平台上实现所需的表面光洁度。商用机器平台将铣削与定向能量沉积系统(例如 Optomec、Mazak、DMG Mori)和粉末床熔合系统(例如 Matsuura 和 Sodick)相结合,以实现小于 0.8 µm 的表面粗糙度 (Sa) [1, 2]。可以直接从构建室获得精加工表面。已知的第一个关于组合式粉末床熔合和铣削的研究是在 2006 年由松下电工株式会社(日本以外的松下电工)和金泽大学进行的,目的是制造
本综述旨在回顾有限元法在优化工艺参数和提高粉末床熔合增材制造工艺部件的机械性能方面的应用。回顾了粉末床熔合过程模拟中的最新有限元模型。详细总结了宏观层面上激光束熔化或电子束熔化过程的数值建模方法。具体而言,阐明了零件模型预处理、工艺参数、网格方案和温度相关材料特性的重要性。还讨论了用于降低计算成本的模拟技术。然后回顾并讨论了现有的粉末床熔合过程模拟中的有限元模型。根据熔池和打印部件的特点对模拟结果进行分类。然后通过实验结果验证了模拟结果。最后,阐述了有限元法在材料设计、过程监控和控制以及工艺优化等其他增材制造问题方面的意义。总结了现有有限元模型的缺点。并提出了优化PBF工艺参数的潜在新方法。
• AM = 增材制造 • DED = 定向能量沉积 • DfAM = 增材制造设计 • PBF = 粉末床熔合 • LP-DED = 激光粉末 DED • L-PBF = 激光粉末床熔合 • EB-PBF = 电子束粉末床熔合 • LW-DED = 激光丝 DED • AW-DED = 电弧丝 DED • EB-DED = 电子束 DED • AFSD = 增材搅拌摩擦沉积 • UAM = 超声波增材制造
电子束粉末床熔合 (E-PBF) 是一种用于金属零件增材制造的极具吸引力的技术。然而,工艺改进需要精确控制电子束传递给粉末的能量。在这里,我们使用可调谐二极管激光吸收光谱 (TD-LAS) 来测量 E-PBF 期间蒸发的钛原子的速度分布函数。激光二极管发射的窄光谱范围允许对蒸发原子进行高分辨率吸收分布分析,从而准确确定它们在熔化过程中的多普勒展宽、密度和温度。获得的蒸汽温度表明熔池表面相对于钛的低压 (0.1 Pa) 沸点过热,表明蒸发发生在非平衡条件下。我们表征了线性能量密度对钛蒸发的影响,发现它与饱和蒸汽压一致。我们对蒸汽特性的表征为熔池模拟提供了可靠的输入。此外,可进一步利用TD-LAS来防止低浓度合金元素的蒸发,从而防止打印部件出现缺陷。
1 湖南科技大学机电学院,湖南省高效轻合金构件成形技术与抗损伤评价工程研究中心,湘潭 411201 2 中南大学,国家级高强度结构材料技术重点实验室,长沙 410083 3 杭州电子科技大学材料与环境工程学院,先进磁性材料研究所,杭州 310018 4 长春工业大学材料科学与工程学院,先进结构材料教育部重点实验室,长春 130012 * 通讯作者:liuyang7740038@163.com (YL); federer.song@163.com (YS); songxiaolei@ccut.edu.cn (XS)
摘要:薄壁结构因其在航空航天工程中用作轻型部件而备受关注。通过增材制造 (AM) 制造这些部件通常会产生不希望的翘曲,这是因为制造过程中会产生热应力,并且部件的结构刚度会降低。本研究的目的是分析激光粉末床熔合 (LPBF) 制造的几个薄壁部件的变形。进行实验以研究由 LPBF 制造的薄壁结构在几个开放和封闭形状中对不同设计参数(例如壁厚和部件高度)的翘曲敏感性。使用 3D 扫描仪测量平面外位移方面的残余变形。此外,首先校准内部有限元软件,然后使用它来增强原始设计,以尽量减少 LPBF 打印过程引起的翘曲。结果表明,开放的几何形状比封闭的几何形状更容易翘曲,并且垂直加强筋可以通过增加刚度来减轻部件翘曲。