季度报告 SSC 项目 SR-1454 搅拌摩擦焊接铝加筋板结构的屈曲破坏试验 2008 年 1 月 31 日 Jeom Kee Paik 撰写 亲爱的林先生和 SSC 项目 SR-1454 的 PTC 成员, 我很高兴提供以下季度报告。 1. 执行摘要 项目任务如下: 任务 1:文献综述 任务 2:测试结构的设计和构造 任务 3:拉伸试样试验 任务 4:初始缺陷的测量 任务 5:屈曲破坏试验 任务 6:非线性有限元模拟 任务 7:熔焊结构与搅拌摩擦焊接结构的比较 任务 8:交付 表 1 显示了最初计划的工作计划与修改后的工作计划。由于在设计测试结构时发现圆角型 FSW 制造存在一些困难,并且采购某些类型的铝材料也存在困难,因此对测试结构的设计进行了重新考虑,这导致工作进度有所延迟。但是,我们正在尽最大努力弥补延迟,以便我们能够按时完成工作。除了进度延迟外,我们还遇到了成本问题。我们预计材料采购和测试结构建造的费用约为 8,500 美元,但总成本将超过 28,000 美元,是最初计划成本的 3.3 倍。表 2 总结了材料采购和测试结构建造的预期成本。
由于焊接电流会影响电极烧尽速度、熔合深度和焊件几何形状,因此它是电弧焊工艺中最重要的变量。焊道形状、焊接速度和焊接效率都受电流影响。由于直流电极负极 (DCEN)(正极性)产生更好的效果,因此电极正极 (DCEP) 上的焊接穿透深度和行进速度更大,并且它用于大多数 GTAW 焊接(反极性)。反极性允许电极尖端快速升温并在气体钨中降解。因为阳极比阴极升温更快。气体钨电弧焊中的较高电流会导致飞溅和工件损坏。同样,在气体钨电弧焊中,较低的电流设置会导致填充焊丝粘住。为了沉积等量的填充物,必须长时间施加高温。因此,对于较低的焊接电流,通常会看到更大的热影响区域。在固定电流模式下调整电压以保持电弧电流稳定 [3,4]。与其他焊接工艺相比,我们通常通过钨极惰性气体焊接实现无缺陷接头。让您更好地控制焊接,从而实现更快、更高质量的焊接。另一方面,GTAW 比大多数其他焊接方法复杂得多,难以跟踪,而且速度要慢得多。填充金属通常被使用,但是一些焊接(称为自熔焊或组合焊)不需要它。这种方法提供了竞争方法,例如焊接技术包括屏蔽金属电弧焊和气体金属电弧焊。
15.补充说明由船舶结构委员会赞助。由其成员机构 16 共同资助。摘要 使用有限元和封闭式方法分析了焊接铝加固板,以确定焊接导致的强度降低。目前商业和军事对大型高速船舶的兴趣导致了铝制单体船、双体船和三体船的发展。在这些船舶的设计中,尽量减少轻型船舶的重量,从而减少结构重量,具有重要意义。焊接铝会导致焊缝周围区域的材料性能发生重大变化。5xxx 系列和 6xxx 系列合金的强度很大一部分来自冷加工或热加工,这些工艺受到焊接热输入的影响。焊接过程中受热影响的区域称为热影响区或 HAZ。对于通过熔焊连接的高强度 5xxx 和 6xxx 系列合金,HAZ 通常比母材弱 30% 到 50%。铝中 HAZ 强度下降 30% 到 50% 尚未得到充分研究。当前的设计方法假设所有金属都会具有这种降低的强度,而局部弱化已被证明对压缩和拉伸的整体强度影响较小。这种方法可能会严重低估焊接结构的强度,并可能对最终的容器设计造成重大的重量损失。本研究旨在为修改设计标准提供依据。针对不同的板-加强筋组合以及 AL5083 和 AL6082 开发和分析了细网格有限元模型。使用了非线性应力-应变曲线。使用以下属性执行非线性有限元分析:a)。母材,b)。HAZ,c)。母材和 HAZ(延伸 3 倍板厚)。针对拉伸、压缩和弯曲载荷分析了这些模型。对于这三种情况中的每一种,都制定了极限状态标准来比较结果。