_________________________ 注意:本手稿由 UT-Battelle, LLC 根据与美国能源部签订的合同编号 DE-AC05-00OR22725 撰写。美国政府保留且出版商在接受文章发表时承认美国政府保留非排他性、已付费、不可撤销的全球许可,以出于美国政府目的出版或复制本手稿的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 ( http://energy.gov/downloads/doe-public-access-plan ) 向公众提供这些联邦资助研究的成果。† 与本工作相关的临时专利申请已提交,美国临时申请序列号为 63/332,403,提交日期为 2022 年 4 月 19 日。
本文介绍了欧盟资助的 H2020 项目 SOLARSCO2OL 的最新进展,包括主要目标、已完成的项目目标和交付成果。SOLARSCO2OL 致力于在葡萄牙的埃武拉熔盐平台 (EMSP) 太阳能设施内展示利用熔盐热量的 2 兆瓦超临界二氧化碳 (sCO 2 ) 循环。SOLARSCO2OL 将成为第一个兆瓦级欧盟 sCO 2 发电厂,它将与现有的熔盐槽式集热器系统相结合,该系统具有高温熔盐热能存储 (TES)。该演示工厂将包括一个熔盐电加热器,在盐进入盐转 sCO 2 主加热器之前提高盐的温度,确保涡轮入口温度 (TIT) 达到 565°C。成功演示兆瓦级 sCO 2 发电模块和熔盐回路组件,以及完整的系统集成,标志着在短期内朝着更具竞争力和更高效的 CSP 电厂迈出了关键一步,利用现有的商业上可行的熔盐 CSP 电厂。在一个以行业为导向的联盟的推动下,SOLARSCO2OL 寻求在 2030 年前推动这一概念的市场化。通过扩大规模的可行性研究、环境和社会分析以及鼓励欧盟内的商业案例来探索这一点。该项目于 2020 年 10 月启动,但由于资金限制,从 2022 年 3 月到 2023 年 2 月暂停。本文重点介绍现在位于葡萄牙埃武拉的新示范工厂的工程、设计和集成方面。以设计优化为中心的初始阶段已经成功完成,该项目目前的重点是制造、原型测试、详细工程、采购和安装等任务。最后阶段将是演示的运行。示范活动预计将于 2025 年底结束。
• 质量:将样品质量增加到 4-11 克(更高的炉子,更高的样品)• 半径:先用水测量半径,再用盐测量• 高度:更高的样品管(~30 厘米)• 像素分辨率:更高质量的相机、图像堆叠、图像减法。 开发一种更高通量的推杆膨胀法——最近在液态盐容器方面取得了成功(定制石墨支架) 为钚做准备……
压水核反应堆和熔盐热能存储耦合的排名方法 2 3 Jaron Wallace *a、CJ Hirschi a、Cameron Vann a、Matthew Memmott a 4 5 a 杨百翰大学 6 7 * 通讯作者 8 jaron.a.wallace@gmail.com 9 PO Box 490, Mona, UT 84651 USA 10 11 12 摘要 13 14 热能存储 (TES) 系统是解决电力市场需求波动的一种方案,可与核电站耦合以实现负荷跟踪。这项工作侧重于开发一种方法来评估将 TES 17 系统集成到现有压水核电站的潜在设计。拟议的排名方法允许一组专家根据从文献中得出的排名标准来假设和权衡设计 19。本研究中开发的方法有助于最终选择现有核电站的 TES 设计。相同的过程可用于分析其他 TES 和核反应堆设计。通过该方法确定的最佳设计是将 TES 系统置于蒸汽发生器之后,并利用核电站产生的蒸汽来加热熔盐 TES 装置。本研究的另一个结论是,在设计选择过程中普遍存在人为偏见,应使用标准化排名标准和大型专家组等措施来最大限度地减少这种错误。 关键词 热能存储、核电、设计选择、灵活能源系统、核能 混合能源系统 引言 在目前的核电站群中,每个反应堆的功率水平无法以匹配全天波动的能源需求所需的上升率波动 [1]。随着可再生能源在电力市场的渗透率不断提高,对非可再生能源的需求上升率也越来越高,也越来越明显 [2]。图 1 显示了这一现象,也称为“CAISO 鸭子图”。该图显示了加州一天内非可再生能源所需的能量,并显示了多年的能源需求。40 41
这项技术的核心是一个充满沙子的热绝缘容器。施加热量,从太阳能光伏(PV),废热或多余的风能采购时,沙子成为存储此热能的培养基。在加热的沙子中添加海水会导致闪光蒸汽产生,类似于热地热井。然后将这种蒸汽凝结并重新捕获为新鲜的淡化水,提供双重好处:清洁水生产和能源储存。作为能量释放的一部分,热量用于为无穷大涡轮有机兰金循环涡轮发电机供电以发电。系统的核心元素是沙子和盐的组合储存。如果不需要淡化的话,可以将闭环热油或二氧化碳用于初级布雷顿循环发电。该系统可扩展从2 kW到1兆瓦以上。
生长还是不生长是植物在面临盐胁迫时经过复杂评估后做出的简单决策。由于气候变化,我们的可耕地越来越少,传统农业可用的淡水资源也越来越少,因此了解植物在盐胁迫下如何做出这一决定至关重要。数十年来的研究一致认为,耐盐性是一种复杂的性状,涉及转录和生理反应的协调反应。我们主要使用拟南芥,已经揭示了一些控制盐胁迫反应的关键方面。现在,我们站在新的前沿,以自然适应胁迫的植物为主要研究目标,扩大我们的知识库,利用新的分子工具和资源,以前所未有的水平了解盐胁迫适应性。在这篇评论中,我们重点介绍了赵等人描述的主要机制。 1 是《创新》第一期关于植物盐胁迫反应的文章,涉及新的突破性研究和培育耐盐作物的新兴前沿,以满足不断变化的世界的需求。
Moltex Energy 的稳定盐反应堆 - 废物燃烧器 (SSR-W) 是一种快谱反应堆设计,使用含有混合镧系/锕系氯化物和 NaCl/MgCl 2 冷却盐的燃料。NB Power 从 90 个候选方案中挑选出 SSR-W 作为两个 SMR 候选方案之一,计划于 2030 年代初建成。稳定盐反应堆技术采用一种新技术,其中熔融燃料盐包含在浸没在熔融冷却盐中的燃料棒中。这与之前的熔盐反应堆(例如 Oak Ridge 熔盐反应堆实验 (MSRE),其中燃料在冷却盐回路中循环)不同,并且在易于加油和安全性方面具有固有优势。因此,燃料包层的材料选择成为一个关键因素。
摘要。本文提出了一种核电站与电网规模储能相结合的方案,称为卡诺电池。当电网中有多余电力时,电加热器会加热熔盐。小型模块化核反应堆产生的蒸汽在外部过热器中用热熔盐加热。为了确保持续过热,该工厂配备了熔盐热能储存器。联合工厂和参考核电站在稳态条件下进行建模和模拟。由于涡轮机入口温度较高,联合发电-储能核电站的效率大大提高。所提出的概念使核电站和卡诺电池的共置比单独的工厂更具吸引力。集成热储存器充当二次电力储存。因此,它超越了压缩空气储存,并且在没有地理和环境限制的情况下与抽水蓄能具有竞争力。