可控液体离子氮碳共渗工艺(TENIFER ® 和 ARCOR ® )可替代电镀涂层 Dr. Joachim Boßlet Durferrit GmbH,德国曼海姆 Danilo Assad Ludewigs Durferrit do Brasil,巴西迪亚德马 众所周知,由于其工艺特性,如高质量水平的最佳再现性,离子液体中的氮碳共渗可为处理后的部件提供出色的耐磨性、点蚀、咬合、卡死和表面疲劳抗性。但是,防腐效果仍然中等。可以通过在氧化盐熔体中进行后热处理来解决此问题,在氮化层表面产生非常薄但致密的氧化层。结合抛光和浸渍,氧化部件可以具有光滑、美观的黑色表面,从而显著提高盐雾试验中长达 1000 小时的耐腐蚀性,而不会失去上述优点。本文讨论了应用受控液体离子氮碳共渗 (CLIN) 工艺(如 TENIFER ® 和 ARCOR ®)来取代镀铬、镀镍和镀锌等电镀层,因为它们具有出色的耐腐蚀性和耐磨性,并强调了使用它们的经济和环境优势。由于易于操作,不需要复杂的工厂设备。工艺时间相当短,允许灵活工作,而无需为工作负载建立更大的缓冲容量。1.简介 CLIN 是用于钢和铸铁氮碳共渗和氧化的现代环保工艺的家族名称。氮和碳的扩散会产生所谓的化合物层,该层具有非金属特性。与其他涂层相比,该边缘区域的突出优势在于,牢固的化合物扩散在基材上,而不是涂在表面上。因此,它们表现出非常好的附着力,裂纹敏感性明显降低。根据所用材料,这些层的硬度为 800 至 1500 维氏硬度。化合物层由下面的扩散层支撑。CLIN 处理的部件可提供卓越的防磨损、防卡死、防擦伤、防点蚀和防疲劳保护。2.工艺特点 基本上所有类型的铁材料都可以在盐熔体中进行氮碳共渗,无需任何特殊的初步预处理,例如工具钢、低碳钢、阀门钢、奥氏体钢、铸铁或烧结材料。工艺顺序并不复杂。处理温度通常为 570 - 590 °C。经过短暂的预清洁和在空气中预热至 350 - 400 °C 后,将部件在盐熔体中进行氮碳共渗,通常持续 60 - 120 分钟。在特殊情况下,可以使用较低 (480 °C) 或较高 (630 °C) 的温度。对于淬火,使用水、空气、氮气、真空或氧化冷却浴。随后,用热水级联清洁炉料。对于氮碳共渗熔体,仅需控制以下几个参数: • 熔体的化学成分 • 处理温度 • 处理时间 与其他处理介质相比,盐熔体具有极高的氮含量。浸入液体盐浴后,氮碳共渗过程立即开始。几分钟后,已经形成了一个紧凑的
显热(如熔盐、岩石材料、混凝土)(研发/中试阶段) 潜热(如铝合金)(商业化) 热化学热(如沸石、硅胶)(研发) 热化学热(如沸石、硅胶)(研发) 电化学 铅酸电池(商业化) 锂离子电池(商业化) 锌碱性电池(商业化) 液流电池(商业化)
摘要:钛合金具有重量轻、强度高、耐热腐蚀等优点,但其优异的力学性能与其组织结构密切相关,在焊接、表面强化、修复等加工过程中需要采用创新的加工方式来保证晶体组织的细化,以满足强度提高、力学性能提高和整体强度提高的要求。通过对Ti-6Al-4V合金表面进行激光直接熔化,比较了连续激光与调制激光模式下熔池的差异。在相同功率下,激光熔池热影响区可缩小为连续激光的1/3。连续激光在高能量密度的作用下可以获得深熔池。不同的熔体穿透深度会导致拉伸性能变化很大。在高频(20 kHz)调制激光作用下可以获得高密度、细晶粒的熔池。包含重熔区的不同熔深深度之间的拉伸试样的力学性能与基体接近,研究结论可为激光重熔加工技术的开发提供技术支持。
尽管基于 WC-Co 直接能量沉积的熔覆层不断优化,但多层涂层的沉积目前仍具有挑战性。在中大型多层涂层中,一直观察到沿沉积厚度延伸的孔隙和裂纹。在多层沉积中,基材从钢变为硬质金属,取代了所有的热特性和稀释模式。本研究探讨了通过在后续层之间进行重熔来提高 WC-Co 多层金属切削应用的沉积质量的方法。为了确定关键工艺参数并确定重熔的影响,首先在单道单层简化条件下检查涂层的特性。这些初步测试表明,重熔可降低孔隙率并确定“白层”微观结构的变化。然后检查了多层配置,对微观结构的彻底分析表明,表面中 Fe-Co-C 元素的富集有利于第二层的沉积。本文讨论了重熔对孔隙率和微观结构的影响,并明确了该方法的优点和缺点,以供未来潜在应用。
摘要:kremer-- gg(kg)聚合物模型是研究分子动力学模拟中通用聚合物特性的标准模型。它的受欢迎程度归功于其简单性和计算效率,而不是代表特定聚合物物种和条件的能力。在这里,我们表明,通过调整链条态,可以使KG模型适应实际聚合物的融化。特别是,我们为各种商品聚合物提供了从kg到SI单位的映射关系。实验和kg熔体之间的连接是在库恩量表(即,从化学特定的小规模到通用大尺度行为的交叉量表上建立的。我们希望库恩尺度映射的kg模型能够忠实地代表以大型构象统计和灵活聚合物的动态为主的普遍特性。特别是,我们观察到我们KG模型的纠缠模量与目标聚合物的实验模量之间的良好一致性。
首先,核能并非零排放(见第 3 页)。其次,先进核能价格昂贵。由于技术仍在开发中,先进核能需要研究补贴的支持,而这些补贴本可以更好地用于建设真正的清洁可再生能源。即使是该行业的领先协会核能研究所也承认,由于成本高昂,“政府必须更多地参与其中”才能推动先进反应堆的发展。77 该行业需要政府签订采购协议,78 这必然会破坏清洁可再生能源协议。小型模块化反应堆在工厂制造后再现场组装,通常被吹捧为解决高资本成本的方案,但与传统反应堆相比,它们的运营成本可能会更高。79
摘要:这项工作研究了有吸引力的聚合物融化中的纳米颗粒(NP)扩散,并揭示了两种不同的动态模式:车辆和核心 - 壳。通过扩散氧化铝NP(R np = 6.5 nm)和二氧化硅NP(R NP = 8.3和26.2 nm)中的各种分子量(14-1220 kDa)的聚(2-乙烯基吡啶)融化,我们检查了R np,Polymer size(R g)和表面化学的影响。使用飞行时间二级离子质谱和三层样品,我们测量横截面纳米颗粒浓度曲线作为退火时间的函数,并提取纳米颗粒扩散系数。小二氧化硅NP(r g / r np = 0.12 - 3.6)显示核心 - 壳行为,而氧化铝NP(r g / r np = 0.50 - 4.6)急剧差异,聚合物分子量的增加,与理论上预测的车辆扩散保持一致。从核心 - 壳到车辆扩散的过渡是分子量增加和较弱的NP/聚合物吸引力的结果,并促进了单体解吸时间的估计值。■简介
数字PCR(DPCR)是需要对目标分子绝对定量或检测罕见事件的研究和诊断应用的强大工具,但是可以在测定中进行区分的核酸靶标数量限制了其实用性。对于大多数DPCR系统,每个目标都会在光通道中检测到一个目标,并且目标总数受到平台上光通道的数量的限制。高阶多路复用有可能显着增加DPCR的实用性,尤其是在样本有限的情况下。多路复用的其他潜在收益包括较低的成本,更多的探针生成的其他信息以及较高的吞吐量。为了满足这种未满足的需求,我们开发了一种新颖的基于熔体的发夹探针设计,以提供多重多重数字PCR的强大选择。在16孔微流体数字PCR平台中,使用三个基于熔体的发夹探针的原型多重数字PCR(MDPCR)测定方法准确区分并量化了每个孔的12个核酸靶标。对于具有10,000个人类基因组当量的样品,空白极限的探针特异性范围为0.00% - 0.13%,检测分析限制的范围为0.00% - 0.20%。实验室间的可重复性非常好(r 2 = 0.997)。重要的是,这种新型基于熔体的发夹探针设计具有超出该原型测定的12个目标/孔的多路复用的潜力。具有出色性能特征的易于使用的MDPCR技术有可能彻底改变数字PCR在研究和诊断环境中的使用。
