数字PCR(DPCR)是需要对目标分子绝对定量或检测罕见事件的研究和诊断应用的强大工具,但是可以在测定中进行区分的核酸靶标数量限制了其实用性。对于大多数DPCR系统,每个目标都会在光通道中检测到一个目标,并且目标总数受到平台上光通道的数量的限制。高阶多路复用有可能显着增加DPCR的实用性,尤其是在样本有限的情况下。多路复用的其他潜在收益包括较低的成本,更多的探针生成的其他信息以及较高的吞吐量。为了满足这种未满足的需求,我们开发了一种新颖的基于熔体的发夹探针设计,以提供多重多重数字PCR的强大选择。在16孔微流体数字PCR平台中,使用三个基于熔体的发夹探针的原型多重数字PCR(MDPCR)测定方法准确区分并量化了每个孔的12个核酸靶标。对于具有10,000个人类基因组当量的样品,空白极限的探针特异性范围为0.00% - 0.13%,检测分析限制的范围为0.00% - 0.20%。实验室间的可重复性非常好(r 2 = 0.997)。重要的是,这种新型基于熔体的发夹探针设计具有超出该原型测定的12个目标/孔的多路复用的潜力。具有出色性能特征的易于使用的MDPCR技术有可能彻底改变数字PCR在研究和诊断环境中的使用。
脂质是一种多样化的疏水分子,对于能量存储,膜结构和信号传导至关重要。脂质代谢的失调与许多疾病有关,包括心血管疾病,肥胖和神经退行性疾病。动脉粥样硬化是心脏病的主要原因,涉及动脉壁内脂质和炎性细胞的积累。在阿尔茨海默氏病中,脂质组成和代谢的变化有助于形成淀粉样蛋白斑块和神经炎症。脂质组学的进步增强了对健康和疾病中脂质作用的理解,有助于治疗方法的发展。基于脂质的药物输送系统(例如脂质体)被广泛用于增强药物的生物利用度和功效。
在本研究中,首先开发了 F-16 飞机全动力学的详细非线性模型,并用 MATLAB 进行编码。该模型包括重力模型、可变大气参数、表格气动函数、推进模型、非线性控制面驱动模型和六自由度运动方程。然后开发了一种使用上述模型计算所有可能配平值的数值工具。该工具可以计算不同操作点的配平值。在开发的算法中,使用了粒子群优化 (PSO) 方法,这是一种在连续搜索空间上具有高收敛速度的元启发式方法。然后使用开发的模型围绕计算出的配平值进行模拟。模拟结果证实,基于 PSO 的配平算法可以高精度地找到所有配平值。
抽象糖尿病是一种慢性退化性疾病,原因是胰腺中缺乏胰岛素的产生或人体使用胰岛素使用的能力较低。根据世界卫生组织(WHO)的一份报告,世界上有4%的总死亡是由糖尿病引起的。国际糖尿病联合会(IDF)指出,糖尿病患者在2013年有所增加。印度尼西亚是糖尿病病例数量最多的第七名。在这项研究中,用于对糖尿病进行分类的方法是使用粒子群优化(PSO)优化的随机森林算法。这项研究使用PSO优化的随机森林分类算法的准确性为78.2%和82.1,值增加了3.9%。可以得出结论,与没有PSO优化的随机森林算法相比,PSO优化可以更好地提高分类精度值。关键字:分类,糖尿病,国际糖尿病联合会,粒子群优化,随机森林1。引言糖尿病是一种非传染性疾病,会导致患者体细胞功能的缓慢下降,其特征是当激素胰岛素的功能通常无法运行时,由于代谢干扰而导致尿液中的血糖水平升高[1]。代谢性疾病称为糖尿病是由胰岛素分泌和作用故障引起的[2]。高血糖水平会导致人体衰竭,心动脉,中风,失明和死亡等人体细胞功能受损[3]。
我们开发了一种基于耗散粒子动力学(DPD)的计算方法,该方法将溶剂的水动力相互作用引入了溶质的粗粒模型,例如离子,分子或聚合物。dpd-solvent(DPDS)是一种完全非驻留方法,可以直接通过任何基于粒子的溶质模型以所需的溶剂粘度,可压缩性和溶质扩散率直接掺入流体动力学。溶质仅通过DPD恒温器与溶剂相互作用,这确保了溶质系统的平衡性能不受引入DPD溶剂的影响,而恒温器耦合强度则设定了所需的溶质扩散率。因此,DPD可以用作替代传统分子动力学恒温器,例如Nosé -Hoover和Langevin。我们证明了在聚合物动力学和通过纳米孔电流流动的情况下,DPD的适用性。该方法应广泛用作将流体动力相互作用引入现有的粗粒溶质和软材料模型的一种手段。
简单总结:慢性粒单核细胞白血病 (CMML) 是一种罕见疾病,预后不良,有进展为急性髓系白血病 (AML) 的风险。干细胞移植 (alloSCT) 是唯一可能治愈的选择。针对特定基因突变的新型靶向药物 (NTD) 对 AML 有用,但人们对 CMML 如何进展为 AML 以及这些药物是否对 CMML 有效知之甚少。在我们的研究中,38% 的患者接受了低甲基化药物治疗,但其中不到一半有反应。六名患者接受了 NTD 治疗,反应良好。只有 10% 的患者可以进行 AlloSCT。25% 的患者进展为 AML,在诊断和进展之间,他们的基因突变发生了变化。尽管 CMML 的预后较差,但分析基因突变有助于更好地分层每位患者的风险,并确定每位患者可能有效的 NTD。
dharanir.pec@gmail.com, ramesh.revathy@gmail.com, danesh.kn1@gmail.com Received : 31 July 2023, Revised: 14 October 2023, Accepted : 21 October 2023 * Corresponding Author ABSTRACT Oral cancer presents a pressing global health concern, ranking as the eighth most prevalent cancer worldwide and leading to a significant number of deaths, particularly evident in India with an annual toll of大约有130,000人死于口腔癌。早期检测的紧迫性是显而易见的,因为由于临床检查和活检而导致的疾病识别延迟可以阻碍有效的治疗和改善患者的结果。这项研究通过开发能够识别受疾病影响的口腔区域并准确分类各种口腔癌疾病的系统来解决这一关键需求。该研究利用深度学习算法来检测和精确定位口服图像中的受影响区域,并结合了高级特征提取技术,尤其是基于模式的特征。使用创新的蜜蜂脉冲夫妇神经网络(BEEPCNN)算法用于对受影响区域的有效分割。为了进一步提高检测效率,引入了一种新型模糊遗传粒子群卷积神经网络(FGPSOCNN),从而降低了计算复杂性,同时保持了高精度水平。拟议的系统使用从Arthi Scan医院收集的实时MRI图像进行了严格的评估。实验结果令人信服地证明了与现有的口腔癌检测方法相比,FGPSOCNN模型的优越性。1。简介这项综合研究不仅满足了早期口腔癌检测的关键需求,而且还引入了一种创新的方法,可以显着提高效率而不会损害准确性。这项研究对口腔癌诊断的潜在影响是很大的,为全球关键的全球健康挑战提供了有希望的解决方案。关键字:口腔癌,深度学习,蜂鸣声,模糊,粒子群优化,fgpsocnn。
引言内质网(ER)是一种多功能细胞器,涉及蛋白质折叠和组装,分离键的形成以及Ca 2 +储存。在ER中,源自与Ca 2 + - 和氧化还原依赖性事件相互之间的源自展开的蛋白质反应(UPR)的信号(17,25)。它们的整合对于细胞分化和死亡决策至关重要(19)。为了实现其许多功能,ER由专门的子区域组成(38,44),其中之一是一个关键信号枢纽:线粒体相关的膜(MAM)保证与线粒体与线粒体的物理关联,用于CA 2 +信号传导和细胞存活的基础(13)。富含Ca 2 +辅助蛋白,氧化还原酶和伴侣蛋白,MAM产生高[Ca 2 +]的微区域,从而激活线粒体Ca 2 + Uniporter(MCU)(MCU)(12、13、16)。ER是过氧化氢的潜在来源(H 2 O 2)。ERO1 A和ERO1 B脂蛋白可持续氧化蛋白折叠,通过PDI将电子从货物蛋白转移到分子氧,并作为副产物产生H 2 O 2(27)。in