ETF 包含仪器和控制基础设施,用于从涡轮发动机测试中使用的各种仪器获取测量值。可用的各种传感器可以满足生产和开发发动机的要求。测量能力包括力、燃料流量、气流、高频响应压力、位移、加速度、数字扫描温度、数字扫描压力和高速数字视频。各种测试单元的测量能力范围从 600 个通道到 3,000 多个通道,参数记录选项从每秒 1 个样本到每秒 156,250 个样本。AEDC 可以为力、燃料流量和压力测量提供严格的校准服务。光谱结构分析设备与
在很大程度上由化石燃料消费驱动的航空旅行的环境影响仍然是辩论的关键主题。应对这一挑战需要立即采用可持续实践来减轻其环境足迹。虽然氢和混合动力推进技术对未来有希望,但当前的努力集中在可持续的航空燃料(SAF)作为可行的近期解决方案,以减少航空排放,同时确保与现有航空基础设施的兼容性。本文研究了航空旅行的环境影响,重点是与常规燃料和SAF相关的排放。使用两种方法,即亚音速燃料流量法(SF2)和改进的版本,校正了校正的亚音速燃料流量法(EC-SF2),沿着从斯德哥尔摩到波尔多的飞行轨迹分析了非CO 2排放趋势。两种方法之间的比较强调了准确的发射建模的重要性,尤其是在SAF校正排放指数方面的重要性。SF2方法表明,SAF燃料的热量高于常规燃料的高度燃料增加了总HC和CO排放,同时降低了无X排放。相反,EC-SF2方法导致更均匀的排放趋势。因此,我们提出的方法可以根据特定于SAF的数据纠正燃油流量和排放指数,因此可以为SAF的排放行为提供更可靠的估计。这些发现突出了对环境评估的排放建模的敏感性。
图 5 展示了基本喷射点火几何形状的放大视图。先导喷射器提供少量燃料(不到总燃料流量的 5%)并保持每冲程恒定的体积。在火花塞辅助喷射器区域产生化学计量混合物,用于与燃料类型无关的火花点火条件。然后,主喷射器可以将根据负载需求而变化的燃料流量引入辅助启动的燃烧中。主喷射器和辅助喷射器的这种分离允许优化起燃区中的条件。
金属空气电池是一种有希望的储能解决方案,但是材料的限制(例如金属钝化,低活性材料利用率)阻碍了其采用。我们研究了一个固体燃料流量电池(SFFB)结构,该体系结合了金属空气电池的能量密度与氧化还原流量电池的模块化。具体而言,金属固体电化学燃料(SEF)在空间上与阳极电流收集器分离。两者之间溶解的氧化还原介体穿梭电荷,氧气还原阴极完成了电路。这种修饰会解除功率和能量系统组件,同时实现机械可再核能并降低非均匀金属氧化的影响。我们进行了一项探索性研究,表明金属SEF可以重复降低有机氧化还原介质。随后,我们为CA操作了概念验证的SFFB单元。25天作为技术可行性的初步证明。总的来说,这项工作说明了这种存储概念的潜力,并突出了改进的科学和工程途径。目录图像:
关键词:控制系统、燃气涡轮发动机、液力机械系统、全权限数字电子控制 (FADEC)、数字电子发动机控制 (DEEC) 1.0 简介 任何发动机控制系统的目标都是让发动机在给定条件下以最高效率运行。此任务的复杂性与发动机的复杂性成正比。从历史上看,喷气发动机一直由液力机械控制系统控制,该系统由飞行员控制的简单机械连杆组成。随着发动机变得越来越复杂,控制信号越来越多,对性能和功能的要求越来越高,电子控制系统应运而生 [1]。当今用于飞机推进的现代航空发动机在过去 60 年中发展成为现在的形式,控制技术在提高性能、可靠性、使用寿命和安全性方面发挥着关键作用。今天,所有现代航空发动机都由全权限数字电子控制 (FADEC) 系统或电子和液力机械系统的组合控制。在许多这些系统中实现的控制功能并没有太大变化。仅使用燃料流量进行速度控制并限制瞬态过程中的流量的原理,就像在第一套液压机械系统中一样
ALGAE-X ® MTC 系统采用安装在重型铝制推车上的工业质量组件制造而成。透明吸入软管(和 MTC-1000 上的转子视镜)显示燃料流量和清晰度。大型滴水盘旨在防止溢出。通过将排放软管连接到绕过过滤器的快速断开装置,无需使用任何消耗品即可对燃料进行抛光。旋装式过滤器头上安装了压力表,以确保最佳过滤器使用率。充满液体的不锈钢真空计监测水分离器的状况。ALGAE-X ® 燃料催化剂 (AFC-705) AFC-705 的使用是任何油箱清洁程序的重要组成部分,可以更快速、更有效地净化和清洁整个燃油系统。AFC-705 可清除油箱壁和挡板上的污泥、粘液和生物污垢,而这些污泥和生物污垢无法通过吸入管到达。AFC-705 是一种全谱燃料添加剂,含有燃烧催化剂、表面活性剂、清洁剂、分散剂、腐蚀抑制剂、润滑增强剂和燃料稳定剂,无需使用昂贵的有毒杀菌剂。MTC 选项:数字流量计(强烈推荐 - 测量再循环燃料和性能监控)可提供更大容量的燃料抛光和油箱清洁系统。
炎症反应涉及几种细胞类型的激活,以使其由大量药物引起的侮辱,并维持组织同种异体。一方面,涉及促炎性反应的细胞,例如炎性M1巨噬细胞,Th1和Th17淋巴细胞或活化的小胶质细胞,必须迅速提供能量以燃料燃料流量,这基本上是由糖溶解和高乳液产生来完成的。是涉及免疫调节和炎症分辨率的调节性T细胞或M2巨噬细胞,优先使用TCA循环将脂肪酸氧化作为能量生产的主要来源。在这里,我们讨论了糖酵解代谢在炎症反应的不同步骤中的影响。最后,我们回顾了多种分子机制,这些机制可以解释糖酵解代谢产物与促炎性弹药的关系之间的关系,包括信号事件,表观遗传重塑,转移后调节调节和后转化后的修改。炎症过程是许多与年龄相关疾病(例如心血管和神经退行性疾病)的共同特征。发现免疫代谢可能是炎症的主要调节剂,可以通过操纵血管和免疫细胞代谢的操纵来扩展用于治疗炎症相关病理的大道。