注释 [1] 标准化学式代表理想燃料。某些表值以范围表示,以代表现场遇到的典型燃料变化。 [2] GGE 表值反映了常见汽油基线参考(E0、E10 和吲哚认证燃料)的 Btu 范围。 [3] 必须考虑用于给车辆加油的仪表或分配设备的类型。对于使用科里奥利流量计分配 CNG 的快速加气站,这些流量计测量燃料质量并根据 GGE 报告分配的燃料,应使用磅/GGE 因子。对于按时加气站或使用以立方英尺为单位测量/记录的传统住宅和商业燃气表的其他应用,应使用 CF/GGE 因子。 [4] 请参阅压缩天然气汽油和柴油加仑当量方法,网址为 http://afdc.energy.gov/fuels/equivalency_methodology.html。 [5] E85 是一种高浓度汽油-乙醇混合物,乙醇含量为 51% 至 83%,具体比例取决于地理位置和季节。在寒冷气候下,冬季的乙醇含量较低,以确保车辆能够启动。根据成分,E85 的低热值从 83,950 到 95,450 Btu/加仑不等。[6] 锂离子电池密度为 400 Wh/l,摘自 Linden 和 Reddy 的《电池手册》,第 3 版,麦格劳-希尔出版社,纽约,2002 年。[7] 用于运输时,锂离子能量密度增加了 3.4 倍,以解释电动汽车传动系统相对于内燃机的效率提高。资料来源 (a) NIST 手册 44 – 质量流量计附录 E https://www.nist.gov/file/323701 (b) 第 78 届全国度量衡大会报告,1993 年,NIST 特别出版物 854,第 322-326 页。https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication854.pdf (c) 交通运输中的温室气体、管制排放和能源使用 (GREET) 模型。2023 年。输入燃料规格。阿贡国家实验室。伊利诺伊州芝加哥。 https://greet.es.anl.gov/ (d) R. McCormick 和 K. Moriarty,《生物柴油处理和使用指南 - 第六版》,美国国家可再生能源实验室 (NREL),2023 年。https://afdc.energy.gov/files/u/publication/biodiesel_handling_use_guide.pdf (e) 美国石油协会 (API),《醇和醚》,出版物编号 4261,第 3 版。(华盛顿特区,2001 年 6 月),表 2。 (f) 《石油产品调查:车用汽油》,1986 年夏季,1986/1987 年冬季。国家石油和能源研究所。 (g) 美国石油协会 (API),《醇和醚》,出版物编号 4261,第 3 版。(华盛顿特区,2001 年 6 月),表 B-1。 (h) K. Owen 和 T. Coley。1995 年。《汽车燃料参考书:第二版》。美国汽车工程师协会。宾夕法尼亚州沃伦代尔。https://www.osti.gov/biblio/160564-automotive-fuels-reference- book-second-edition (i) J. Heywood。1988 年。《内燃机基础知识》。麦格劳-希尔公司。纽约。(j) 甲醇研究所。纯甲醇的物理性质。访问于 2024 年 3 月 14 日,网址为 https://www.methanol.org/wp-content/uploads/2016/06/Physical-Properties-of-Pure-Methanol.pdf (k) Foss, Michelle。2012 年。液化天然气安全与保障。经济地质局、杰克逊地球科学学院。德克萨斯大学奥斯汀分校。 (l) 能源信息管理局。“能源使用解释:运输能源使用。” https://www.eia.gov/energyexplained/use-of-energy/transportation.php (m) J. Sheehan、V. Camobreco、J. Duffield、M. Graboski 和 H. Shapouri。1998 年。生物柴油和石油柴油生命周期概述。NREL 和美国能源部 (DOE)。NREL/TP-580-24772。 https://www.nrel.gov/docs/legosti/fy98/24772.pdf (n) M. Wang。2005 年。燃料乙醇对能源和温室气体排放的影响。向 NGCA 可再生燃料论坛发表的演讲。阿贡国家实验室。伊利诺伊州芝加哥。https://www.researchgate.net/publication/228787542_Energy_and_greenhouse_gas_emissions_impacts_of_fuel_ethanol
附录 C 1. 斯坦福研究所图表 ...................................................................................... 326 2. PWA 材料图表 .............................................................................................. 328 3. 公式(发动机参数相互关系) ...................................................................... 346 4. 危险区域分类 ............................................................................................. 354 5. 空气滤清器选择指南清单 ...................................................................... 355 6. 空气/油冷却器选择指南清单 ...................................................................... 358 7. 气体燃料特性 ............................................................................................. 363 8. 液体燃料特性 ............................................................................................. 370 9. 符号列表 ............................................................................................. 372 10. 换算系数 ............................................................................................. 375 11. 入口水冷却(雾化) ............................................................................. 380 12. 整体 A 加权声级计算 ............................................................................. 383
化石燃料带来的挑战推动了人们对替代能源的追求,从而推动了生物燃料的发展。本研究重点是通过酯交换反应从废弃的鳄梨油中生产生物柴油。首先,使用萃取技术从鳄梨的果皮和种子中提取油。然后用甲醇和硫酸 (H₂SO₄) 对提取的油进行预处理,以将其游离脂肪酸含量降低至 1.0 wt% 以下。本研究比较了两种专家系统,即自适应神经模糊推理系统 (ANFIS) 和响应面法 (RSM),用于建模和优化鳄梨油的生物柴油生产。使用统计指标评估了这些优化工具的性能。结果表明,ANFIS 优于 RSM,误差值较低,预测标准误差 (SEP)=0.7653、平均绝对误差 (MAE)=0.1413、均方根误差 (RMSE)=0.4103、平均绝对偏差 (AAD)=0.2955%、均方误差 (MSE)=0.1683,判定系数高 (R² = 0.9976)。两种模型都预测生物柴油产量较高 (>85%),ANFIS 的产量 (88.21%) 略高于 RSM (86.20%)。将优化条件下生产的生物柴油的特性与美国材料与试验协会 (ASTM) D6751 和欧洲标准 (EN) 14214 标准进行了比较,结果发现其在可接受的范围内,表明该燃料是适用的。
这项研究的动机是生产Rothmannia longiflora的脱脂种子蛋糕的生物乙醇及其物理/化学特性的分析。为最大乙醇屈服基底参数优化了发酵过程;温度,pH和酵母浓度。统计分析表明,pH和温度是影响乙醇产量的最具影响力的参数。在以下最佳条件下观察到11.14 g/cm 3的最大乙醇产量; pH为6,温度为30 O C,酵母浓度为2%。生产的乙醇进行了燃料特性分析。使用FT -IR分析进行了衍生的生物乙醇的结构研究,并确认乙醇的特征带为3369.52 cm -1、2918.5和2844.0 cm -1。发现生物乙醇的某些燃料特性与ASTM标准和常规乙醇的特性一致。这项研究表明,Rothmannia longiflora种子蛋糕的生存能力是生产生物乙醇的有前途的原料。
健康的肠道是整体福祉的基础。和富氏酸已被证明可以通过多种方式支持肠道健康。它促进了有益的肠道性生长的生长,这些肠道是在营养,营养吸收和免疫功能中起着至关重要的作用。通过培养均衡的肠道微生物组,Fulvic Acid有助于维持消化健康并预防胃肠道问题,例如肠易激合子(IBS)(IBS)和炎症性肠病(IBD)。此外,富氏酸的抗燃料特性可以帮助舒缓肠道,减轻炎症并促进愈合。这使其成为患有诸如渗漏的肠道合成条件的个人的宝贵盟友,那里的肠道衬里变得过于渗透,并允许有害物质进入BL OODSTREAM。
•此过程能够生产具有优化燃料特性的可调节的异烷烃/环烷基喷气燃料•环烷烃为改善燃料密度和燃烧特性提供了对石质和芳族烃的燃烧特性的潜力•技术•技术增强了PNNL/Lanzatech的燃料效率•通过DOE的燃料构成,并提高了燃料的价值•DOE EE,DOE EE,DOE EE,DOE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,则可以增强。将分析生产的烷烃/环烷基流的比率来推断燃料特性•开发的技术将使废物流转换为可调的环烷基流 div>
燃料特性被认为是野火行为的关键。天气和气候影响已被证明是北美大火发展的主要决定因素(Skinner 等人 1999 年,Gedalof 等人 2005 年),但燃料成分和结构仍然非常重要。套用最近的一篇评论——虽然火灾可以在不受地形影响和各种天气条件下发生,但没有燃料就不会发生火灾(Parsons 等人 2016 年)。燃料在火灾行为中的重要性在精细和粗略尺度上都得到了认可。最近对北美(包括 BC)和欧亚大陆火灾辐射功率的大陆尺度比较显示,加拿大的火灾强度值高于俄罗斯;这种差异归因于加拿大云杉松林比西伯利亚落叶松林更容易支持树冠火,尽管这两个地区的火灾天气相似(Rogers 等人 2015 年)。其他建模研究详细讨论了燃料在确定加拿大和整个北美的燃烧概率和景观可燃性方面的重要性(Amiro 等人 2001 年、Parisien 等人 2011 年、Parks 等人 2012 年)。管理人员往往关注燃料,因为它们是火灾行为三角中唯一可以操纵以减轻火灾行为的元素(Fernandes 和 Botelho 2003 年)。
摘要:冠层燃料特性对于评估林分中的火灾危险和潜在严重程度至关重要。模拟工具为防火规划提供了有用的信息,以减少野火的影响,前提是存在具有足够空间分辨率的可靠燃料图。许多国家正在提供免费的机载 LiDAR 数据,为大规模改善燃料监测提供了机会。在本研究中,我们建立了模型,以估计松林区机载 LiDAR 的冠层基高 (CBH)、燃料负荷 (CFL) 和体积密度 (CBD),其中以不同的脉冲密度获取了四个点云数据集。使用来自 1 p/m 2 数据集的 LiDAR 指标对 CBH、CFL 和 CBD 进行拟合的最佳模型分别得出调整后的 R 2 为 0.88、0.68 和 0.58,RMSE (MAPE) 为 1.85 m (18%)、0.16 kg/m 2 (14%) 和 0.03 kg/m 3 (20%)。拟合模型的可转移性评估表明,根据 LiDAR 脉冲密度(高于和低于校准数据集)和模型公式(线性、幂和指数),精度水平不同。与较低(0.5 p/m 2 )或较高回波密度(4 p/m 2 )相比,指数模型和类似脉冲密度(1.7 p/m 2 )的结果最佳。还观察到冠层燃料属性方面的差异。
燃料特性被认为对野火行为至关重要。天气和气候影响已被证明是北美大火发展的主要决定因素(Skinner 等人 1999 年,Gedalof 等人 2005 年),但燃料成分和结构仍然非常重要。套用最近的一篇评论——虽然火灾可以在不受地形影响和各种天气条件下发生,但没有燃料就不会发生火灾(Parsons 等人 2016 年)。燃料在火灾行为中的重要性在精细和粗略尺度上都得到了认可。最近对北美(包括 BC)和欧亚大陆火灾辐射功率的大陆尺度比较显示,加拿大的火灾强度值高于俄罗斯;这种差异归因于加拿大云杉松林比西伯利亚落叶松林更容易支持树冠火,尽管这两个地区的火灾天气相似(Rogers 等人 2015 年)。其他建模研究详细讨论了燃料在确定加拿大和整个北美的燃烧概率和景观可燃性方面的重要性(Amiro 等人 2001 年、Parisien 等人 2011 年、Parks 等人 2012 年)。管理人员往往关注燃料,因为它们是火灾行为三角中唯一可以操纵以减轻火灾行为的元素(Fernandes 和 Botelho 2003 年)。
摘要 交通运输正在被新技术迅速改变,例如智能交通系统(包括智能卡、车载诊断和信息系统以及更智能的高速公路、公交、汽车、物流系统和其他信息系统)。随着未来二十年新技术的引入,选择范围及其影响将继续扩大,并可能在许多方面改变交通运输系统。例如,可能会引入电动、氢能或混合电动-石油汽车,这将大大改变车队的排放和燃料特性,并可能对系统运营和财务构成挑战。智能卡技术可以大大提高各种道路使用、停车和公交票价定价方案的可行性和便利性。监控和信息系统可以使旅行者安排行程并选择路线以避开拥堵,从而减少拥堵。先进的交通管理系统可以显着增加道路容量,同时提高安全性并尊重行人舒适度等其他目标。从长远来看,自动化可以使安全性、容量和便利性得到大幅提升。然而,这些技术是否以及在多大程度上成为交通系统的重要组成部分,不仅取决于技术发展,还取决于公共和私人对这些技术的可取性和实用性的决定。新技术的全系统应用和高市场渗透率可能与目前正在进行的零碎应用相比,具有截然不同的收益和成本。简介 从历史上看,交通运输一直是一个技术密集型行业,多年来,科学技术的进步为交通系统带来了许多改进。在过去的几十年里,新技术已被应用于管理各种问题,如交通拥堵、空气污染、燃料使用和事故风险,无论是客运还是货运。因此,用户受益于:� 降低旅行成本� 尽管运输量大幅增长,但旅行和运输速度增加或保持稳定� 低成本的当日、次日和准时交付� 安全性、保障性和可靠性提高� 更加舒适和方便� 更高的能源效率(尽管大部分收益被用于生产更大、装备更精良的车辆,而不是减少燃料使用)� 减少对环境的影响,特别是以空气污染和噪音排放的形式� 每辆车的容量增加。