此外,人工智能还用于核工业,以增强自动化、进行燃料补给和维护规划、培训核人员进行正常和异常操作、进行在役检查、裂纹和缺陷的评估和表征、用于反应堆设计、安全、保障、实时风险评估、长期运行/寿命应用、加强工作场所安全以及基于计算机模拟的在线剂量测定。然而,人工智能的变革力量也带来了挑战,包括透明度、信任和安全问题以及其他道德问题。
1 https://eur-lex.europa.eu/legal-content/en/txt/?uri=celex:32023r1542。 2 The autonomy of an electric vehicle can be reduced by 10 % at temperatures just below 0° C, and by up to 40 % at very low temperatures, below ‑ 10° C. 3 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32023R1804 4 The EU has set targets for the development of alternative fuels 基础设施。 然而,尽管欧盟对替代燃料基础设施部署(AFIR)的部署法规不包含有关旅游目的地的任何特定规定,但对成员国施加的一般义务,以开发替代燃料补给和加油的基础设施也可能使旅游区受益。1 https://eur-lex.europa.eu/legal-content/en/txt/?uri=celex:32023r1542。2 The autonomy of an electric vehicle can be reduced by 10 % at temperatures just below 0° C, and by up to 40 % at very low temperatures, below ‑ 10° C. 3 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32023R1804 4 The EU has set targets for the development of alternative fuels 基础设施。然而,尽管欧盟对替代燃料基础设施部署(AFIR)的部署法规不包含有关旅游目的地的任何特定规定,但对成员国施加的一般义务,以开发替代燃料补给和加油的基础设施也可能使旅游区受益。
国际空间站的长期合作伙伴渴望与 NASA 一起进入月球轨道。加拿大航天局 (CSA) 已承诺为 Gateway 提供先进的机器人技术,而欧洲航天局 (ESA) 计划提供国际居住舱 (IHab) 和 ESPRIT 模块,后者将提供额外的通信功能、用于部署科学有效载荷和立方体卫星的科学气闸舱以及 Gateway 的燃料补给。日本宇宙航空研究开发机构 (JAXA) 计划提供居住舱组件和后勤补给。俄罗斯航天局 (Roscosmos) 也表示有兴趣在 Gateway 上进行合作。
这项研究由陆军副参谋长 (DCS) G-4 委托,旨在分析采用超小型模块化反应堆 (vSMR) 技术的移动式核电站 (MNPP) 的潜在优势和挑战,并解决能源输送和管理的更广泛的运营和战略影响。国防部负责采购、技术和后勤的副部长于 2016 年发布了国防科学委员会 (DSB) 工作组关于前沿/远程作战基地 1 能源系统的最终报告。DSB 观察到,能源是军事行动的关键支持组成部分,并且将继续如此,需求会随着时间的推移而不断增加。1 这项研究支持 DSB 的建议,并考虑了与未来、近期涉及部署和使用 MNPP 的决策相关的政治、经济、社会、技术、环境和法律/监管 (PESTEL) 因素。使用移动核电符合美国国家安全战略 (NSS) 和 2018 年国防战略中概述的新的地缘政治格局和优先事项,重点关注中国和俄罗斯作为美国国防部 (DOD) 的主要优先事项。陆军认识到战争性质的根本变化,不断演变的威胁汇聚在一起,我们的对手的技术日益复杂,跨越了竞争的连续体,而不是过时的和平/战争二元论。这项研究发现,从技术上讲,核电可以减少供应脆弱性和运营成本,同时为减少石油需求和将燃料集中用于支持作战指挥官 (CCDR) 的优先事项和多域作战 (MDO) 中的机动提供可持续的选择。能源是军事力量的跨领域推动因素,而核燃料提供最密集的能源形式,能够在无需持续燃料补给的情况下在前沿和偏远地区产生所需的电力。陆军愿景的关键点包括高强度冲突,陆军必须准备好与近乎匹敌的竞争对手进行大规模作战行动 (LSCO)。MNPP 支持战略和作战部署,可以满足高度发达的成熟战区(例如欧洲)以及全球不成熟战区和欠发达地区的预期电力需求。多项研究表明,空中和
核电站运行的最大经验是核海军推进,特别是航空母舰和潜艇。这些积累的经验可能成为拟议的新一代紧凑型核电站设计的基础。核动力潜艇的任务正在根据信号情报收集和特种作战重新定义。核动力舰艇约占美国海军作战舰队的 40%,包括整个海基战略核威慑力量。美国海军的所有作战潜艇和一半以上的航空母舰都是核动力的。这里的主要考虑因素是核动力潜艇不像传统动力装置那样消耗氧气,并且在燃料补给之前具有较长的续航能力或任务时间;仅受船上可用的食物和空气净化用品的限制。另一个独特的考虑是使用高浓缩铀 (HEU) 来提供紧凑的反应堆系统,该系统具有足够的内置反应性,可以克服氙气反应堆的死区时间,从而实现快速重启和加油之间的长燃料燃烧期。在第二次世界大战期间,潜艇使用可以在水面运行的柴油发动机,为大量电池充电。这些可以在潜艇潜水时使用,直到放电。此时,潜艇必须重新浮出水面为电池充电,并且容易受到飞机和水面舰艇的探测。尽管使用特殊的通气管装置将空气吸入和排出浅潜于水面以下的潜艇,但核反应堆理论上为其提供了无限的潜水时间。此外,核燃料的高比能(即每单位重量的能量)消除了跟随水面或水下海军舰艇舰队的脆弱油轮舰队不断加油的需要。另一方面,核反应堆一次加油足以满足长时间的需要。现代海军反应堆的浓缩度高达 93%,U 235 能够达到 97.3%,设计为在其 20-30 年的使用寿命中每隔 10 年或更长时间才加油一次,而陆基反应堆使用的燃料浓缩度低至 U 235 的 3-5%,需要每隔 1-1 1/2 年加油一次。新反应堆的设计使用寿命为航母 50 年,潜艇 30-40 年,这是弗吉尼亚级潜艇的设计目标。核心中含有可燃毒物,例如钆或硼。这些允许较高的初始反应性,以补偿裂变产物毒物的积累
核电站运行的最大经验是核海军推进,特别是航空母舰和潜艇。这些积累的经验可能成为拟议的新一代紧凑型核电站设计的基础。核动力潜艇的任务正在根据信号情报收集和特种作战重新定义。核动力舰艇约占美国海军作战舰队的 40%,包括整个海基战略核威慑力量。美国海军的所有作战潜艇和超过一半的航空母舰都是核动力的。这里的主要考虑因素是核动力潜艇不像传统发电厂那样消耗氧气,而且它们在燃料补给之前具有很长的续航能力或任务时间;仅受船上可用的食物和空气净化用品的限制。另一个独特的考虑因素是使用高浓缩铀 (HEU) 来提供紧凑的反应堆系统,该系统具有足够的内置反应性,以克服氙气反应堆的死区时间,从而实现快速重启和加油之间的长燃料燃烧期。第二次世界大战期间,潜艇使用可以在水面运行的柴油发动机,为大量电池充电。这些电池随后可以在潜艇下潜时使用,直到电量耗尽。此时潜艇必须浮出水面为电池充电,并且容易受到飞机和水面舰艇的探测。尽管使用特殊的通气管装置将浅潜水下的潜艇吸入和排出空气,但核反应堆理论上可以为其提供无限的下潜时间。此外,核燃料的高比能或每单位重量的能量消除了跟随水面或水下海军舰艇舰队的脆弱油轮舰队不断加油的需要。另一方面,核反应堆一次加油足以满足长时间的需要。现代海军反应堆的浓缩度高达 93%,铀 235 的浓缩度可达 97.3%,设计为在 20-30 年的使用寿命中每 10 年或更长时间更换一次燃料,而陆基反应堆使用的燃料浓缩度低至铀 235 的 3-5%,每 1-1.5 年需要更换一次燃料。新堆芯的设计使用寿命为在航母上 50 年,在潜艇上 30-40 年,这是弗吉尼亚级潜艇的设计目标。堆芯中加入了可燃毒物,如钆或硼。这允许较高的初始反应性,以补偿裂变产物毒物在反应堆寿命期间的积累