在"⼤脑与机器"这⼀跨学科领域,通信⼯程的最新进展凸显了神经架构对⼯程进展的影响。这促使⼈们开始探索脑启发计算技术,尤其是⽣物识别(BCI)技 术。这些系统促进了活体⼤脑与外部机器之间的双向通信,能够读取⼤脑信号并将其转换为任务指令。此外,闭环BCI 还能以适当的信号刺激⼤脑。该领域的研 究涉及多个学科,包括电⼦学、光⼦学、材料科学、⽣物兼容材料、信号处理和通信⼯程。低维材料(尤其是⽯墨烯等⼆维材料)的特性进⼀步增强了脑启发电 ⼦学的吸引⼒,这些特性是未来类脑计算设备的基础。在⽣物识别(BCI)领域,通信⼯程在促进⼈脑与计算系统在数字通信、物联⽹、新兴技术、空间和IoX 设 备融合等不同领域进⾏⽆缝信息交换⽅⾯发挥着⾄关重要的作⽤。光⼦学和光⼦集成电路(PIC)是这⼀多学科研究中不可或缺的⼀部分,可为⽣物识别(BCI) 提供⾼速、节能的通信和⼀系列优势,包括⾼速数据传输、低功耗、微型化、并⾏处理和光刺激。这些特性使光⼦学成为⼀项前景⼴阔的技术,可推动脑机接⼝ 的发展,并在神经科学和神经⼯程领域实现新的应⽤。
收集了净扭矩和NOx排放量等性能数据。使用基于 APRBS 和 Chirp 信号的输入信号,我们获得了大约 68.9 小时的训练数据和大约 8.3 小时的模型验证数据。此外,为了验证目的,我们还获取了日本目前用于乘用车认证测试的WLTC全球统一测试循环下的30分钟模拟驾驶数据。请注意,用于获取验证数据的 APRBS 和 Chirp 信号不包含在用于获取训练数据的输入信号中。 VDE模型中数据采样周期为0.01秒,数值实验获取的数据点数如表2所示。 2.2 AI引擎模型构建及性能评估 本研究在构建重现VDE特征的AI引擎模型时,采用了神经网络这种机器学习算法,也是一种模仿人类神经系统的数学模型。 AI发动机模型被设想用作第3章中描述的燃烧控制器的状态预测模型。在这里,我们构建了一个模型来预测燃烧控制器控制的三个目标:燃烧重心位置、燃烧周期和净扭矩。表3给出了AI引擎模型的输入和输出参数列表。对于输入参数,事先使用XGBoost(eXtreme Gradient Boosting)9)构建预测模型,并利用SHAP(SHapley Additive exPla-nations)10)进行重要性分析,选取对预测目标影响力较大的参数。此外,对于输入参数,进气压力和进气氧浓度是使用过去四秒的时间序列数据来测量的,同时考虑到瞬态运行期间的响应延迟。 在建立模型时,神经网络中超参数的设置对准确率有很大的影响。因此,在本研究中,我们使用树结构 Parzen 估计器 (TPE)11) 来优化隐藏层的数量和神经元的数量。在 TPE 中,我们设置了最小化评估函数的超参数。
https://www.mos.gov.cn/kjbgz/202402402_,1898,hhtml)https://www.mos.gov.cn/kjbgz/202402402_,1898,hhtml)
脑机接口作为大脑和外部设备信息交互的渠 道 , 是前沿脑科学和重要脑疾病诊治的底层核心 工具 . 脑机接口是生物技术和信息技术交叉融合 的颠覆性技术 , 其技术研发和落地应用是一个复 杂的系统工程 , 包括神经电极、芯片、算法、通讯、 植入等核心器件和关键技术 , 涵盖微电子、神经 科学、材料学、计算机科学、临床医学、伦理学 等多学科交叉 . 因此 , SCIENCE CHINA Informa-
[9] 刘洋 , 刘东远 , 张耀 , 等 .面向脑机接口应用的便携式 fNIRS 拓 扑成像系统:全并行检测与初步范式实验 [J].中国激光 , 2021, 48 (11): 1107001.Liu Y, Liu D Y, Zhang Y, et al.A portable fNIRS - topography system for BCI applications: full parallel detection and pilot paradigm validation[J].Chinese Journal of Lasers, 2021, 48(11): 1107001.
回归因子预处理的信号中分别提取了常用的 fNIRS 特征 , 并比较了它们的质量 。 结果表明 , 基于 GLM 的方法能够对大脑活动提供更好的单次实验评估 ,
① 参见王行愚 、 金晶 、 张宇等 :《 脑控 : 基于脑 — 机接口的人机融合控制 》, 载 《 自动化学报 》2013 年第 3 期 , 第 208-221 页 。