22 年 11 月 6 日截至日期:数据来源:NMPBS(Inv)/NRMS(RE Rate)/N12(EPA/SSF)/BUPERS3(Adv Op)
摘要:风力涡轮机和光伏等可再生能源是环保能源供应的关键。然而,它们不稳定的电力输出对供应安全构成了挑战。因此,具有存储能力的灵活能源系统对于可再生能源的扩展至关重要,因为它们允许存储非需求产生的电力并根据需要重新转换和供应。为此,提出了一种新颖的发电厂概念,其中高温储能 (HTES) 集成在传统微型燃气轮机 (MGT) 的回热器和燃烧器之间。它用于在供应过剩时存储可再生能源,随后用于减少 MGT 运行期间的燃料需求。因此,污染物排放显著减少,同时电网稳定。本文提出了一项数值过程模拟研究,旨在研究 HTES 的不同存储温度和负载曲线对 MGT 性能(例如燃料消耗、效率)的影响。此外,还推导出相关操作点及其工艺参数,如压力、温度和质量流速。由于燃烧室的运行条件受 HTES 的强烈影响,本文对其对燃烧室可操作性的影响进行了详细的理论分析,并对第一个适合该化合物的燃烧室设计进行了实验研究,并在较高的入口温度条件下进行了测试。
我们 90% 的时间都待在室内,其中 70% 是在家里 1 ,家里的空气质量可能比室外空气差 5 倍 2 。因此,AccuClean ® 利用专利技术,可去除通过可重复使用过滤器的高达 99.98% 的空气传播颗粒 3 ,包括 99.9% 的甲型流感 (H1N1) 病毒 4 ,从而为整个家庭提供更洁净的空气。按照制造商的说明使用 AccuClean ® 全屋空气净化器时,可有效去除导致 COVID-19 的病毒替代品。有效去除率基于使用 MS-2 噬菌体的独立测试结果,MS-2 噬菌体是一种代表病毒大小颗粒的细菌,如导致 COVID-19 的 SARS-CoV-2。这种过滤水平使其效率比标准的 1 英寸过滤器 5 高出 100 倍 5 。
科德宝过滤技术公司在工业空气过滤领域拥有 60 多年的领先地位,尤其擅长燃气轮机和压缩机领域。我们的解决方案能够可靠地清除涡轮机进气中的颗粒物,防止结垢,并最大限度地提高其性能和总体成本效益。通过防止涡轮叶片腐蚀和压缩机叶片上积聚灰尘,它们还可以提高可靠性,消除计划外停机并降低维护成本。此外,我们的解决方案始终经过优化,以满足特定的当地条件,例如高湿度、异常空气污染、极端粉尘浓度或盐水喷雾。
除了结构紧凑、维护成本低之外,燃气轮机还可以使用多种燃料源,这使其成为高效生产能源的自然选择。 因此,在过去 40 年里,燃气轮机在电力行业(包括公用事业、工业工厂以及航空业)中的应用越来越广泛。 [6] 在联合循环运行中,当入口温度超过 1400°C 时,效率可高达 63%。 [2] 因此,人们采用了不同的策略来保护当前使用的镍基高温合金,例如沉积氧化钇稳定化氧化锆热障涂层 (TBC) 和强化薄膜冷却。然而,当考虑长时间使用(t>10000h)时,这一标准并不现实,因为TBC在900°C以上时会快速蠕变,再加上其热膨胀系数(CTE)与合金的热膨胀系数相差很大,会增加剥落的风险,并限制金属基部件在涡轮发动机中的使用。[7–10] 尤其是设想未来的燃气轮机将使用氢或氨等无碳燃料源,水蒸气是燃烧的主要产物之一,会加剧这些合金的降解。[5,11–13] 因此,为了减少温室气体排放和提高燃气轮机效率,需要用更坚固、耐氧化和腐蚀的材料来替代它们,这些材料可以在更高的温度下使用。由于密度低、热膨胀系数低(3-5.5×10−6K−1)、抗高温蠕变性和熔点高,Si3N4、SiC、SiC/SiC复合材料等非氧化物硅基陶瓷在燃烧环境中的应用非常突出[14–21]。
自 1970 年代以来,人们就开始使用水和蒸汽喷射来控制燃气轮机的 NOx 排放。在燃气轮机内部,燃料富集区会产生高火焰温度,这是燃料和空气同时混合并随后燃烧的结果。将水或蒸汽注入燃烧室的火焰区域可形成散热器,从而降低燃烧区温度并减少热 NOx 的形成。如报告前面所述,随着燃烧区温度的降低,NOx 的产生量会成倍减少。此过程中使用的水必须是高质量的(例如软化水),以防止涡轮机中出现沉积物和腐蚀。虽然许多联合循环设施可能在现场设有现有的软化水处理设施,但现有的简单循环设施通常没有。在这些情况下,可以选择建造或租用新的水处理设备,或将高质量的水运送到现场。
在这七个住宅示范点,GHP 已展示出 a) 在寒冷气候下高效运行,b) 为空间/水加热负荷提供舒适感,c) 降低安装复杂性,d) 可靠性提高,运行时间超过 16,000 小时。在最近这个阶段,多伦多和伊利诺伊州芝加哥的 Next-Gen 装置运行了 8,000 多小时,产生了近 60,000 加仑的热水和 300 多 MMBtus 的空间加热。使用计费数据和建模基线,这些 GHP 作为组合系统可节省高达 33% 的热量,而威斯康星州上一代 GHP 的节省率更高,高达 46%,这是由于运行时间更长(冬季更冷、房屋更大)和其他因素。作为有待改进的领域,GHP 平均每年消耗 300-1000 kWh,此外还要为 AHU 和循环泵增加功率。 GTI 实验室按照 ANSI Z2.40.4 标准对 GHP 进行测试,结果显示区域 IV(美国平均气候)的季节性年燃料利用效率 (AFUE) 为 141%,寒冷气候的季节性年燃料利用效率 (AFUE) 为 138%。
(2)任何额定功率为 10 MW 或以上、每年运行时间超过 4,000 小时的机组的所有者或运营商均应安装和运行 CEMS 来测量和记录 NOx 排放量。 CEMS 应根据所有适用的联邦法规进行认证、校准和维护,包括但不限于《联邦法规》第 60 部分(40 CFR 第 60 部分)第 40 篇第 60.7(c)、60.7(d) 和 60.13 节的要求、40 CFR 第 60 部分附录 B 的性能规范、40 CFR 第 60 部分附录 F 的质量保证程序、40 CFR 第 75 部分第 75.10 和 75.12 节、40 CFR 第 75 部分附录 A 的规范和测试程序、40 CFR 第 75 部分附录 B 的质量保证和质量控制程序以及圣地亚哥县空气污染控制官员书面批准的协议。
在部分负荷下运行时,可以采用空气控制来减少燃气轮机压缩机提供的空气流量,从而减少驱动它所需的功率,从而提高燃料效率。同样,可以提高燃气轮机排气温度,从而提高热回收锅炉等的效率。这在热电联产和联合循环电厂中是理想的。在发电机应用中减载时,排气阀的快速和成比例反应有助于通过排出多余的压缩机排气来控制多轴燃气轮机的动力涡轮超速。