太阳能是唯一足以替代化石燃料的能源。然而,由于阳光的扩散性质,大规模利用太阳能需要高效的能量捕获和储存过程。[3] 光伏 (PV) 电池能够大规模地将太阳能转化为电能,但需要昂贵的储能设备(如电池)来储存和分配电能。储存和分配光伏电池产生的太阳能的另一种解决方案是将太阳能转化成化学能的形式(尤其是 H2 的形式)并储存起来。作为能源载体,H2 具有几个明显的优势,例如易于储存和运输、能量密度高(700 个大气压下约 140 MJKg @ 1)并且没有碳排放(H2 的唯一燃烧产物是水)。[4]
几十年来,露天焚烧和露天爆破(OB/OD)一直被用于处理/销毁高能危险废物。“高能”是指一类能够释放大量化学能的物质,例如军用弹药、烟花和汽车安全气囊推进剂。与封闭式替代技术相比,OB/OD 是一种不受控制的处理技术。1 与能够在释放前捕获和处理残留副产品的技术相比,高能危险废物的 OB/OD 是在露天进行的,处理副产品会直接排放到环境中(图 1)。因此,通过排放颗粒物、不完全燃烧产物或爆炸物块,以及散布弹药和其他废弃物(排泄物)2 而造成的 OB/OD 相关污染和暴露,引发了人们对是否有可用于高能危险废物的替代处理技术的质疑。为了履行 EPA 监控 OB/OD 安全替代品持续开发进展的承诺,3 本报告介绍了已开发的替代处理技术,这些技术在许多情况下已被采用,可考虑替代 OB/OD。
空气污染增加的可能性是FD中尚未解决的策略的另一个方面。随着居民人口和住宅的增加,从家用木燃烧器中排出的烟雾可能会增长。基于燃烧的家庭加热导致颗粒物和其他燃烧产物释放到空气中,当被吸入时,这会对人类健康产生不利影响。在镇上和寒冷的冬夜,霍克湾的城市地区目前经历了不健康的空气质量,部分是由于基于燃烧的家庭供暖而产生的。5显着增加了住宅的数量,尤其是那些被燃烧的家居供暖的人数可能会加剧当前空气污染的问题。由于空气质量与公共卫生密切相关,我们建议FDS应考虑对空气污染的任何可能影响,以使其实施可能产生并积极考虑适合保护人类健康的缓解措施。
能量聚合物是通常含有硝基,硝酸盐,氮杂类等的化合物,它们的燃烧产物包含大量的氮气。启发性聚合物在推进剂和炸药中用作粘合剂[1]。粘合剂可以与含有爆炸物团或普通聚合物的聚合物与能量质量化合物结合使用,即硝基菌,硝胺以及硝基和氮化物和偶氮化合物。这些粘合剂的使用旨在开发高能,无烟,防爆和低险种的复合能量系统。通常是通过多求能量单体获得的,例如,来自3-硝基甲基-3-甲氧乙烷(NIMMO)[2,3]的聚二莫Mo [2,3]和来自2-硝基甲状腺氧甲氯苯甲烷(Glyn)的2-硝基甲基甲氧基(Glyn)[4,5,5,5,glyn)[4,5,5,5,5,5,5,5,5,glyn)[4,5,5,5,5,5,5,5,5,nimmo)[4,5,5,5,5,5]
- 包括可远程访问的可燃气体监测,以检测可燃气体的存在 - 包括适当的标牌和现场清单,以识别与 BESS 内容相关的危险化学危害 - 将 BESS 产生的有毒气体纳入现场应急响应程序,包括适当的禁区、应急响应人员的 PPE 以及与邻近行业和当地居民所需的通信 - 确认 BESS 产生了哪些有毒物质(类型和体积),并要求供应商提供有关燃烧产物的信息 - 使用合适的空气扩散模型确定 BESS 周围的潜在毒性危害影响区,并考虑风速和风向 - 在扩散模型完成后,为社区准备有关 BESS 有毒气体扩散对居民的潜在危害的信息 - 考虑并确认噪音墙(如果实施)的意外后果,包括进出现场的可达性、危险气体的积聚和场地内热量的限制(“热岛效应”)
这篇小型评论提供了一个视角,即催化如何为人类太空探索的挑战做出贡献,即在不久的将来在月球上建立太空栖息地,以及在遥远的未来实现火星之旅。本文回顾了催化在太空探索中的作用以及基于催化化学过程的人类生命元素资源供应。作为次要影响,在长期太空任务固有的可持续性要求的高约束下学习催化,可以有利于推进目前开发的催化过程,以实现地球上的绿色循环经济。因此,深入研究空间应用催化也可以为地球上紧迫的工业、环境和社会可持续性挑战提供答案,例如联合国可持续发展目标所表达的挑战。即使对于今天的短期太空任务,催化已经在国际空间站 (ISS) 的环境控制和生命支持系统 (ECLSS) 中发挥着关键作用,此外,在燃料和推进剂合成以及 CO 2 等燃烧产物的回收中也发挥着关键作用。
几十年来,露天焚烧和露天爆破(OB/OD)一直被用于处理/销毁高能危险废物。“高能”是指一类能够释放大量化学能的物质,例如军用弹药、烟花和汽车安全气囊推进剂。与封闭式替代技术相比,OB/OD 是一种不受控制的处理技术。1 与能够在释放前捕获和处理残留副产品的技术相比,高能危险废物的 OB/OD 是在露天进行的,处理副产品会直接排放到环境中(图 1)。因此,通过排放颗粒物、不完全燃烧产物或爆炸物块,以及散布弹药和其他废弃物(排泄物)2 而造成的 OB/OD 相关污染和暴露,引发了人们对是否有可用于高能危险废物的替代处理技术的质疑。为了履行 EPA 监控 OB/OD 安全替代品持续开发进展的承诺,3 本报告介绍了已开发的替代处理技术,这些技术在许多情况下已被采用,以替代 OB/OD。
摘要。隧道内所有配备智能通风系统的主要和辅助设备都是为了确保安全而设计的。这些系统相互“对话”和“倾听”,决定打开/关闭某些系统或部分系统,并及时通知隧道运营商,隧道运营商有权对所有必要系统进行集中控制。本文使用数值模型来评估可变形元件确保隧道安全运行的效率。使用它们的理念是基于通过柔性元件人为增加隧道的气动阻力,这将阻碍燃烧产物的扩散,但不妨碍人们通过隧道的移动,并有助于隔离干净和污染的气团。这种阻力将用于迅速将隧道车道分成更小的部分,这将有助于在火灾初期尽早扑灭火灾,延长疏散时间并在无法控制的强烈火灾中挽救生命。至于紧凑型可变形元件,它可以用于运营隧道和规划隧道,因为它在实践中不会减少宝贵的地下空间的体积。