[3] Bitter,M.,“亚音速和超音速流动中通用火箭模型的高重复率 PIV 调查”,Exp Fluids(2011)50:1019-1030,Springer,DOI:10.1007 / s00348-010-0988-8。 [4] Babuk,VA,“固体火箭推进剂燃烧产物中铝团聚体演变模型”,推进与动力杂志,第 18 卷,第 4 期,2002 年 7 月 - 8 月,DOI:10.2514/2.6005 [5] Desrochers,MF,“地面试验火箭推力测量系统”,烟火技术杂志,第 14 期,2001 年冬季,第 50-55 页。 [6] Penn,K.,“测量模型火箭发动机推力曲线”,《物理教师》,第 48 卷,第 9 期,2010 年 12 月,第 591-593 页,DOI:10.1119/1.3517023 [7] Pappu,S.,“卫星遥感在印度史前研究和遗产管理中的应用”,《考古学杂志》,第 37 卷,第 9 期,2010 年 9 月,第 2316-2331 页,DOI:10.1016/j.jas.2010.04.005 [8] Harridon,M.,“直升机 Guimbal Cabri G2 事故分析”,《国际科学与研究出版物杂志》,第 10 卷,第 12 期,2020 年 12 月,ISSN 2250-3153, DOI : 10.29322/IJSRP.10.12.2020.p10809 [9] Harridon,M.,“马来西亚警察航空联队搜救人员对搜救一般问题的看法”,《国际科学与研究出版物杂志》,第 10 卷,第 10 期,2020 年 10 月,ISSN 2250-3153,DOI : 10.29322/IJSRP.10.10.2020.p10630 [10] Campbell,TA,“航空航天工程课程的模型火箭项目:
闪点(PMCC):> 100°C易燃极限(LFL-UFL):未确定火和爆炸危害:此材料在水蒸发之前不会燃烧。残留物可以燃烧。灭火介质:熄灭该产品的可燃残留物,使用水雾,二氧化碳,干燥的化学物质或泡沫。消防设备:佩戴正压自牢固的呼吸器(SCBA)和保护性消防服装(包括消防头盔,外套,裤子,靴子和手套)。如果没有防护设备或不使用防护设备,请从受保护的位置或安全距离上打火。消防指示:让人们远离。隔离火和拒绝不必要的进入。使用水喷雾剂冷却裸露的容器和火灾影响区域,直到火出现,并通过重新点燃的危险。熄灭该产品的可燃残留物,使用水雾,二氧化碳,干燥的化学物质或泡沫。如果可能的话,包含火水径流。火水径流(如果不包含)可能会造成环境破坏。危险燃烧产品:在火灾条件下,该产品的某些组成部分可能会分解。烟雾可能包含未鉴定的有毒和/或刺激性化合物。燃烧产物可能包括并且不限于氮氧化物,氯化氢,一氧化碳,二氧化碳和氨。NFPA评分:健康 - 2 /易燃性 - 1 /反应性-0 < / div>
研究了生物质与氧化铁的太阳能气化,用于合成气和铁的生产。太阳能和生物质都是很有前途的可再生能源。气化过程将固体碳质原料转化为燃料或化学品。然而,传统工艺需要原料的部分燃烧来供应能量,并且由于燃烧产物的稀释,固有的氧气生产成本高,合成气热值低。使用固体氧化物的化学循环气化是解决这些问题的另一种选择。通过提供集中的太阳能作为高温热源,可以从该过程中生产出更多的合成气,同时能够将太阳能储存成可调度的燃料。这项工作提出探索在高加热速率下在氧化铁上进行太阳能生物质气化,这代表了太阳能反应器中获得的条件。计算了 100 至 1,500 ◦ C 之间气化反应的热力学平衡,并报告了使用专门设计的感应炉在 1,100 ◦ C 下以氧化铁、水或二氧化碳作为氧化剂进行生物质气化的实验结果。固体产物分析表明,氧化铁可以根据氧载体的比例还原为金属铁。这些结果表明,氧化铁是一种有效的太阳能生物质气化材料,可通过一种新颖的绿色冶金工艺同时生产合成气和铁。
太空技术可以成为环境保护和支持地球可持续发展目标 (SDG) 的宝贵资产。然而,这些活动本身也对环境产生影响。在整个生命周期中,运载火箭都会影响地球和太空中的局部和全球环境。特别是,它们会向大气层的每一层直接排放燃烧产物,导致臭氧消耗和辐射强迫。最近的文献表明,人们对太空发射的这些后果研究不足,尤其是考虑到航天工业的预计增长。本论文旨在评估当前和未来环境影响的情况,以及社会对这一问题的反应。本文基于 1957 年至 2021 年期间 6,502 次轨道发射的综合记录,对航天运载火箭设计进行了历史分析,以了解技术发展和排放方面的影响。这项研究表明,作为当今火箭设计前所未有的多样性的一部分,有关发动机和推进剂的关键决策将决定该行业未来对大气的影响。研究分析了航天领域的趋势,并生成了评估未来形势的情景。首次定量分析了社会对这一问题的反应,并将其与汽车行业、卫星行业和航空业的三个案例研究进行了比较。研究共审查了 30 年来 463,630,586 篇新闻文章、771,604 份法律文件和 10,836,398 份学术出版物。提出了促进航天发射行业更可持续未来的替代路径,包括可行的设计选择、影响评估方法、监管选项以及基于运载火箭可持续性指数的市场激励机制。
摘要 - 最近的空间开发正在实施几种简单,更便宜的火箭技术。环境问题和政府限制后需要用绿色的推进剂来代替目前的(基于氢津)的有毒推进剂,而绩效的损失最少。过氧化氢是绿色推进剂未来的有前途的候选者,因为其柔韧性和良性性质可以提高简单,成本效益和环保的推进,并具有足够的性能,以替代丝津或其他高性能的有毒螺旋桨。因此,该论文专门用于研究基于过氧化氢的推进剂,以用于未来的太空推进应用。这项工作的主要目的是研究绿色推进剂的燃烧性能。首先,我们讨论了使用NASA CEA代码研究了过氧化氢的使用,空间推进的特性和管理氢的特性和管理的各种组合和过氧化氢的组合物。主要目的是在不同的O/F比为2,4,6,8,10的燃烧温度和特定的脉冲值,以及20、25和30 bar的各种压力室值。为此,已经考虑了两种情况来研究液态甲烷的BI推进剂,并在不同的O/F比和室,喉咙和出口时获得了质量分数变化。分析已经考虑了BI推进剂的所有组成和燃烧产物的比较,以便在适当的O/F比和固定腔室压力下实现最佳效率。可以观察到,过氧化氢的浓度对燃烧性能和由于重量浓度而产生的化学成分作用具有显着影响。得出的结论是,过氧化氢对于研究活动的未来发展很有用。索引术语 - 绿色推进剂;过氧化氢;双胶质剂;液态甲烷;太空推进; CEA分析
将氢混合到天然气中,作为缓解与使用化石燃料有关的环境问题的一种手段,提出了一个由氢气和天然气混合物加油时设计用于天然气的设备性能的问题。这项研究研究了由甲烷作为天然气代理燃料的空间和水加热设备的性能,以及含有多达15%氢的甲烷/氢混合物的性能。使用适用的CSA/ANSI Z 21系列标准,使用三种气体混合物(纯甲烷,5%氢/甲烷混合物和15%氢/甲烷混合混合物)测试了设备的输入速率,点火和燃烧器的工作特性,燃烧产物特性和气体泄漏。气体成分对炉子的影响还测试了温度升高和加热管温度。还评估了露水的露点温度和酸度。总体而言,电器没有出现重大可操作的问题和一致的热量输出降低和CO 2排放,并随着甲烷/氢混合物中的氢含量增加。因此,要满足相同的热量需求,电器将需要在更长的时间内运行,从而导致额外的二氧化碳排放。然而,与天然气相比,使用混合物的使用,相同热量输出的总体CO 2排放量仍会降低。一氧化碳和氧化氮的测量值在可接受的范围内,无论使用的燃料类型如何。对于其他测得的特性没有观察到一致的趋势,表明高达15%的氢混合物不会显着影响这些参数。对本文所检查的含有5%和15%氢的气体混合物的未来测试以及较高的氢量应该融合天然气以确定更具代表性的结果。
最近的太空发展正在实施几种更简单、更便宜的火箭技术。出于环保考虑和政府限制,有必要用绿色推进剂取代目前的(肼基)有毒推进剂,同时将性能损失降至最低。过氧化氢是未来绿色推进剂的有希望的候选者,因为它具有灵活性和良性,可以推动简单、经济高效、环保的推进,其性能足以取代肼或其他高性能有毒推进剂。因此,本论文致力于研究过氧化氢基推进剂,以用于未来的太空推进应用。这项工作的主要目的是研究绿色推进剂的燃烧特性。首先,我们讨论了过氧化氢在太空推进中的使用、特性和管理,后来,使用 NASA CEA 代码研究了过氧化氢的各种组合和成分。所进行的活动涉及过氧化氢作为单一推进剂、双推进剂和混合推进剂的研究。主要目的是找出不同 O/F 比 2、4、6、8、10 和各种压力室值 20、25 和 30 bar 下的燃烧温度和比冲值。为此,考虑了两种情况来研究乙醇、RP-1 和液态甲烷的双推进剂,并获得了不同 O/F 比下以及在室、喉部和出口处的质量分数变化。在混合推进剂条件下研究了四种情况,以各种石蜡(SASOL 0907、SASOL 6003、SASOL 6805)作为燃料,并有效研究了添加铝的影响。在双推进剂的情况下,考虑了所有成分并比较了燃烧产物,以便在适当的 O/F 比和固定的室压下实现最佳效率。观察到过氧化氢浓度对燃烧性能有显著影响,化学成分因重量浓度而产生影响。结论是过氧化氢对研究活动的未来发展很有用。
第 5 节:消防措施 消防员应使用全脸自给式呼吸器和防渗透防护服保护自己免受分解和燃烧产物(CO、CO2、烯烃和石蜡化合物、微量有机酸、酮、醛和醇)的伤害。 着火时,可能会形成有害健康的气体。用水、泡沫、二氧化碳或干化学介质灭火。 粉尘在细分并悬浮在空气中时易燃易爆。 第 6 节:意外泄漏措施 如果发生泄漏,从源头堵住泄漏并清扫处理。不要冲入下水道或水道。 第 7 节:处理和储存 安全处理预防措施 建议注意个人卫生,例如在接触此材料后和进食前立即洗手和洗脸。 粉尘可能与空气形成爆炸性混合物。避免形成粉尘并控制点火源。悬浮在空气中的聚烯烃粉尘颗粒可燃并且可能爆炸。远离热源、火花、火焰和其他火源。防止粉尘堆积和尘云。根据公认的工程实践和 NFPA 规定,在任何可能产生粉尘和/或静电的过程中,采用接地、粘合、通风和爆炸释放措施。爆炸危险仅适用于粉尘,不适用于本产品的颗粒形式。在装卸操作以及制造过程中处理粉末可能会导致粉尘形成,应采取必要的个人防护措施。与所有细分材料一样,应采取预防措施避免吸入和眼睛接触。如果是粉尘形式,请在从储存处转移时尽量减少除尘。根据 NFPA 70“国家电气规范”,将所有转移、混合和集尘设备接地,以防止静电火花。查看并遵守所有相关的 NFPA 规定,包括但不限于与可燃粉尘危险有关的 NFPA 484 和 NFPA 654。从可能存在粉尘的材料处理、转移和加工区域移除所有火源。工作区域应提供局部排气通风。安全储存注意事项存放在有喷水灭火系统的仓库中。由于产品是聚乙烯,因此一旦点燃,它们会燃烧并产生热火焰。避免接触明火等火源。如果在聚乙烯产品周围进行热作业,请在附近放置灭火器。如果有热源,请保持该区域通风良好。第 8 节:暴露控制/个人防护
食入:用大量水漱口。不要催吐。寻求医疗救助。 第 5 部分:消防措施 消防员应使用全脸自给式呼吸器和防渗透防护服保护自己免受分解和燃烧产物的伤害。用水、泡沫、二氧化碳或干化学介质灭火。 火灾中产生的危险气体/蒸气有:氨、一氧化碳;少量氰化氢和醛。粉尘细小且悬浮在空气中时易燃易爆。 第 6 部分:意外泄漏措施 如果发生泄漏,从源头堵住泄漏并清扫处理。不要冲入下水道或水道。 第 7 部分:操作和储存 安全操作注意事项 建议注意个人卫生,例如在接触此材料后和进食前立即洗手和洗脸。粉尘可能与空气形成爆炸性混合物。避免形成粉尘并控制点火源。悬浮在空气中的塑料粉尘颗粒可燃且可能爆炸。远离热源、火花、火焰和其他点火源。防止粉尘堆积和粉尘云。根据公认的工程实践和 NFPA 规定,在任何可能产生粉尘和/或静电的过程中,采用接地、粘合、通风和爆炸缓解措施。爆炸危险仅适用于粉尘,不适用于本产品的颗粒形式。在装卸操作和制造过程中处理粉末可能会导致粉尘形成,应采取必要的个人防护措施。与所有细分材料一样,应采取预防措施避免吸入和眼睛接触。如果是粉尘形式,在从储存处转移时尽量少除尘。根据 NFPA 70“国家电气规范”,将所有转移、混合和集尘设备接地,以防止静电火花。查看并遵守所有相关 NFPA 规定,包括但不限于与可燃粉尘危险相关的 NFPA 484 和 NFPA 654。清除可能存在灰尘的材料处理、转移和加工区域的所有火源。工作区域应提供局部排气通风。安全储存注意事项存放在有喷水灭火系统的仓库中。由于产品是尼龙,因此一旦点燃,它们会燃烧并产生热火焰。避免接触明火等火源。如果在尼龙产品区域进行焊接,请在附近放置灭火器。如果有热源,请保持该区域通风良好。
第 5 节:消防措施 消防员应佩戴全面罩式自给式呼吸器并穿着防渗透防护服,保护自己免受分解和燃烧产物的伤害。用水、泡沫、二氧化碳或干粉灭火剂灭火。 火灾中产生的危险气体/蒸气有:氨、碳氧化物、氮氧化物、氨、环戊酮、微量氰化氢和醛。粉尘细小且悬浮在空气中时易燃易爆。 第 6 节:意外泄漏措施 如果发生泄漏,应从源头堵住泄漏并清扫处理。请勿冲入下水道或水道。 第 7 节:操作和储存 安全操作注意事项 建议注意个人卫生,例如在接触此材料后和进食前立即洗手和洗脸。 粉尘可能与空气形成爆炸性混合物。避免形成粉尘并控制火源。悬浮在空气中的塑料粉尘颗粒可燃并可能爆炸。远离热源、火花、火焰和其他火源。防止粉尘堆积和尘云。根据公认的工程实践和 NFPA 规定,在任何可能产生粉尘和/或静电的过程中,采用接地、粘合、通风和爆炸释放措施。爆炸危险仅适用于粉尘,不适用于本产品的颗粒形式。在装卸操作以及制造过程中处理粉末可能会导致粉尘形成,应采取必要的个人防护措施。与所有细分材料一样,应采取预防措施避免吸入和眼睛接触。如果是粉尘形式,请在从储存处转移时尽量减少除尘。根据 NFPA 70“国家电气规范”,将所有转移、混合和集尘设备接地,以防止静电火花。查看并遵守所有相关的 NFPA 规定,包括但不限于与可燃粉尘危险有关的 NFPA 484 和 NFPA 654。从可能存在粉尘的材料处理、转移和加工区域移除所有火源。工作区域应提供局部排气通风。安全储存注意事项存放在有喷水灭火系统的仓库中。由于产品是尼龙,一旦点燃,它们会燃烧并产生热火焰。避免接触明火等火源。如果在尼龙产品区域进行焊接,请在附近放置灭火器。如果有热源,请保持该区域通风良好。第 8 节:暴露控制/个人防护