火箭发动机的再生冷却结构承受着极大的负荷。负荷是由热燃烧气体(CH4/OX 约为 3500 K)和冷冷却通道流(LCH4 约为 100 K)相互作用引起的,这导致结构中存在较大的温度梯度和高温(铜合金最高可达 1000 K 左右),同时两种流体之间存在较高的压力差。本研究旨在更好地了解三个主要组成部分的物理行为:结构、热气体和冷却剂流,以及它们的相互作用,特别是结构的寿命。自 20 世纪 70 年代以来,已经对燃烧室结构进行了一些寿命实验。Quentmeyer 研究了 GH LOX 2/ 燃烧室 [1] 的 21 个圆柱形 LH 2 冷却测试段的低周热疲劳。在小尺寸燃烧室内安装了一个水冷中心体,以减少燃料消耗并形成火箭发动机的燃烧、音速喉部和膨胀区域。研究了三种不同的材料。热电偶被放置在冷却通道肋条和冷却剂的入口和出口歧管中。测试是在 41.4 bar 的室内压力和 6.0 的混合比(氧气与燃料之比)下进行的。喉部区域的热通量达到 54 MW/m 2 。循环重复测试,直到通过感测冷却剂通道泄漏检测到燃烧室故障。没有定量研究热气壁的变形。单个冷却剂质量均未
航天飞机主发动机在地面测试中。可以看到控制器安装在燃烧室的左侧。(NASA 照片 885338)改进后的计算机使用摩托罗拉 68000 32 位微处理器(来源:http://history.nasa.gov/computers/Ch4-8.html)
正在地面测试的航天飞机主发动机。可以看到控制器安装在燃烧室的左侧。(NASA 照片 885338)改进后的计算机使用摩托罗拉 68000 32 位微处理器(来源:http://history.nasa.gov/computers/Ch4-8.html)
随着 1994 年废气排放标准越来越严格,需要更高的燃油喷射压力和更及时地将燃油输送到燃烧室。皮卡领域的领军企业福特使用了卡特彼勒开发的 HEUI(液压驱动、电子控制、单体喷射)喷射系统。道奇/康明斯发动机使用博世 P7100 直列式燃油泵。将其视为一个微型直列式六缸发动机,其工作原理就很容易理解了。由泵凸轮轴驱动的六个柱塞泵通过六条高压燃油管路向喷油器发送燃油脉冲。压力打开喷油阀,使燃油进入燃烧室。使用博世 P7100 燃油泵时,燃油计量(怠速时为 85:1;满载时为 25:1)由燃油齿条和齿轮控制,这些齿轮旋转计量螺旋,使燃油进入六个柱塞泵。
随着 1994 年废气排放标准越来越严格,需要更高的燃油喷射压力和更及时地将燃油输送到燃烧室。皮卡车领域的领导者福特使用了卡特彼勒开发的一种名为 HEUI(液压驱动、电子控制、单体喷射)的喷射系统。道奇/康明斯发动机使用了博世 P7100 直列式燃油泵。把它想象成一个微型直列六缸发动机,它的工作原理就很容易理解了。六个由泵凸轮轴驱动的柱塞泵通过六条高压燃油管路向喷油器发送燃油脉冲。压力打开喷油阀,让燃油进入燃烧室。使用博世 P7100 燃油泵时,燃油计量(怠速时为 85:1;满载时为 25:1)由燃油齿条和齿轮控制,这些齿轮转动计量螺旋,让燃油进入六个柱塞泵。
双组元推进剂 500 N 级推进器,用于月球着陆时的轨道控制和速度调节。它采用了国产陶瓷燃烧室,实现了世界上独一无二的“宽推力范围和脉冲操作”组合。其高性能还有助于减轻推进系统的整体重量。
(57)摘要:Model-G-Tech LCFC烹饪炉是一种创新的,环保的替代品,替代了传统的煤油和柴油炉灶,旨在解决财务和环境问题。该炉子利用二手机油和食用油作为燃料来源,大大降低了运营成本并促进负责的废物处理。炉子采用无烟设计,可最大程度地减少室内空气污染和相关的健康风险。关键组件包括燃油储层,燃油输送系统,带有次级燃烧室进行排放控制的燃烧室,由可充电电池提供动力的进气机制以及可调节的火焰设置。炉灶的高效率可确保最佳的燃油消耗,而安全功能(例如温度传感器,安全阀,压力调节器和自动关闭机制)可以增强用户安全。Model-G-Tech LCFC烹饪炉为家庭(尤其是在低收入社区中)提供了具有成本效益,可持续和健康意识的解决方案,同时为环境保护做出了积极贡献。
o天然气管道运输中的内燃机; O窑炉中的窑炉制造; o铁和钢厂和铁合金制造中的炉子; o玻璃和玻璃产品制造中的炉子; o铁和钢厂的锅炉以及铁合金制造,金属矿石采矿,基本化学制造,石油和煤炭制造,以及纸浆,纸张和纸板磨坊; o固体废物燃烧器或焚化炉中的燃烧室和焚化炉。
最大化的火焰表面积允许快速释放大量能量。这样,即使在空气预热和炉温较高的情况下,火焰温度也能保持在较低水平,并防止过量产生 NO x 。接触喇叭形燃烧室的火焰在燃烧室中心产生负压。负压由流入的炉内气氛补偿,炉内气氛又通过火焰排放到外部。炉内气氛还能确保火焰冷却。平焰燃烧器可根据所需的性能配置提供各种尺寸。喷嘴混合燃烧器头是平焰燃烧器 BIO..K(图 4)的重要组成部分。混合单元的特殊、久经考验的几何形状确保在燃烧器所需的容量范围内实现精确的化学计量燃烧。两种燃烧器类型都具有低火喷枪,用于逐步扩大控制范围和点火。在主燃烧器关闭的情况下,低火喷枪可实现可重复的保持能力。这样即使在保温模式下也能确保低 O 2 炉内气氛。由 SiC 陶瓷材料制成的混合头保护器可保护混合装置免受由于炉内气氛渗透而导致的热过载 - 特别是在保温模式下。在 Kromschröder 自己的实验室中,石英的几何形状可最佳地适应特定应用的特殊要求。
o 001A-F - 替代喷气燃料供应链分析 o 025 - 国家喷气燃料燃烧计划 – 领域 #1:化学动力学燃烧实验 o 026 -(完成) - 国家喷气燃料燃烧计划 – 领域 #2:化学动力学模型开发与评估 o 027 - 国家喷气燃料燃烧计划 – 领域 #3:高级燃烧测试 o 028 - 国家喷气燃料燃烧计划 – 领域 #4:燃烧模型开发与评估 o 029 - 国家喷气燃料燃烧计划 – 领域 #5:雾化测试与模型 o 030 - 国家喷气燃料燃烧计划 – 领域 #6:裁判旋流稳定燃烧室评估/支持 o 031 - 替代喷气燃料测试与评估 o 032 -(完成) - 石油喷气燃料全球温室气体排放生命周期评价 o 033 - 替代燃料测试数据库 o 034 - 国家喷气燃料燃烧计划 - 领域#7:整体计划整合与分析 o 052 - 航空电气化战略比较评估 o 065 - 快速喷气燃料预筛选的燃料测试方法 o 066 - 高热稳定性燃料的评估 o 067 - 燃料加热对燃烧和排放的影响 o 073 - 使用替代燃料的燃烧室耐久性