作者:丹·佐贝尔 8 月 16 日凌晨,切斯特消防局收到一则关于斯旺威克街上一辆货车起火的消息。这听起来很简单,但事实并非如此。事实证明,这起事件让全市和周边社区团结起来,帮助控制可能升级为更糟糕局面的事件。据消防局局长马蒂·伯特说,接到 5 点 25 分的电话后,第一个到达现场的消防员注意到货车旁边的交通标志顶上有一条电线。消防局叫来电力公司切断电源,并使用干化学药品扑灭最初的火焰。火被扑灭后,人们发现天然气在漏出。这导致火势重新燃起。伯特说这一切都很偶然。电线掉在了标志牌上。标志牌的立柱接触或几乎接触到它下面的一条四英寸长的天然气管道。因此,电流是通过标志牌立柱进入天然气管道的。电线上出现了一个铅笔大小的洞,天然气从地面冒了出来。没人知道电线倒塌的原因。目前正在调查。伯特说,消防员立即疏散了两个街区的居民。他说,由于该地区的电线带电,他们不得不让火自行熄灭。据伯特说,最终疏散了五六个街区的居民。镇东侧多达 500 个煤气表也被关闭。消防部门和煤气主管杰里米·霍曼以及员工乔希·斯特雷特、詹姆斯·布罗克迈耶
摘要:近年来,人们对肿瘤细胞线粒体作为药物靶点的兴趣重新燃起。这种关注部分归因于新发表的论文,这些论文记录了实体肿瘤的异质性特征,包括缺氧区和低氧区,这些区域会培养具有不同代谢特征的细胞群。这些细胞群包括肿瘤起始细胞或癌症干细胞,它们具有很强的适应氧气供应减少的能力,可在糖酵解和氧化磷酸化之间快速切换作为能量和代谢物的来源。此外,该细胞亚群表现出很高的化学和放射抗性以及很高的肿瘤再增殖能力。有趣的是,研究表明,抑制肿瘤细胞中的线粒体功能会影响糖酵解途径、细胞生物能和细胞活力。因此,抑制线粒体可能是根除癌症干细胞的可行策略。在此背景下,过去十年的药物化学研究已经合成并表征了能够将新型或现有药效团运送到线粒体肿瘤细胞的“载体”,其机制利用了载体的物理化学性质和线粒体的固有特性。这些药效团的化学性质各异,有些是从植物中分离出来的,有些则是在实验室中合成的。其中一些分子具有活性,而有些则是前体药物,可单独评估或与针对线粒体的药物相关。最后,研究人员最近描述了一些安全性和有效性已得到充分证明的药物,它们可能通过非典型机制在肿瘤细胞中发挥线粒体特异性抑制作用。通过将这些分子与线粒体载体分子连接起来,可以提高这些分子的有效性。这些有前景的药物应该在临床研究中单独进行评估,并与经典化疗药物联合使用。
NRAS 和 KRAS 激活点突变存在于 10 – 30% 的髓系恶性肿瘤中,并且通常与增殖表型相关。RAS 突变具有等位基因特异性结构和生化特性,具体取决于热点突变,从而导致不同的生物学后果。鉴于它们在大多数髓系恶性肿瘤中的亚克隆性质,它们的克隆结构以及与其他驱动基因改变的协同模式可能会对髓系恶性肿瘤的预后和治疗产生直接的因果影响。总体而言,RAS 突变往往与慢性和急性髓系恶性肿瘤的不良临床结果有关。最近的几种预后评分系统已纳入 RAS 突变状态。虽然 RAS 突变并不总是作为独立的预后因素,但它们会显著影响疾病进展和生存。然而,它们的临床意义取决于突变类型、疾病背景和所采用的治疗方法。最近的证据还表明,RAS 突变会导致对靶向治疗产生耐药性,尤其是 FLT3、IDH1/2 或 JAK2 抑制剂以及维奈克拉-阿扎胞苷组合。研究针对 RAS 通路内多个轴(包括上游和下游成分)的新型治疗策略和组合是一个活跃的研究领域。直接 RAS 抑制剂在实体瘤患者中的成功应用,让人们重新燃起希望,相信这一进展将转化为血液系统恶性肿瘤患者的治疗。在这篇综述中,我们重点介绍了过去十年间骨髓恶性肿瘤中 RAS 突变的关键见解,包括其流行率和分布、协同遗传事件、克隆结构和动态、预后意义和治疗靶向性。
Feild使用数据分析> CS和建模方法探讨了环境的复杂动态。我们通过跨学科的,以管理为中心的人物> ve来追求有关人类AC>如何影响生态系统健康和下游水资源的问题。博士生填写此效果将有机会制定自己的研究设计,该设计将分析> CAL技能纳入数据密集型建模技术,例如贝叶斯Sta> s> cal学习,计算机视觉,计算机视觉和Geospa> al Analys> cs。POTEN> AL项目围绕农业主导的景观中的流量建模,评估水质动力学大规模风暴事件,并在各种城市水域中燃起新兴的污染物/类型。开始日期:夏季或2025年夏季赔偿:TUI5ON豁免,包括支付课程费用,Compe55ve S5PEND以及健康保险教育5ON和技能:B.S.或M.S.生物学和农业工程或密切相关的学科。不需要以前的编程经验,但有利。强大的SCIEN5 WRI5NG技能是首选。loca5on:田纳西大学,诺克斯维尔大学田纳西大学是田纳西大学的流浪汉大学,是一项主要的公共研究(R1)INS5TU5ON,近距离为5ES,距Oak Ridge Na5onal实验室。大烟熏山Na5onal公园距离酒店有45车程,诺克斯维尔(Knoxville)拥有其户外活动(铺有112英里的绿道,1000英亩的公共荒野,以及田纳西河(Tennessee River)以及校园旁边的水上爱好者)。指导风格:每周1点1个MEE5NG,通过电子邮件开放且一致的CommuniceA5ON,在会议上进行网络的机会5,以及个性化的专业开发机会5ES:发送有关您的研究兴趣和合格CA5ONS的电子邮件,以及您的CV,成绩单,成绩单,以及向Emineunefivan博士(emineunéfidan)(eEmineunédannctect)。
近十年来,脑机接口 (BCI) 技术已进入非临床应用的主流人机交互 (HCI) 研究。BCI 已成为多模式交互研究的一部分,作为技术系统用户的附加交互模式。BCI 还成为研究的一部分,其中神经生理数据为系统提供有关用户情感和心理状态的信息,从而可以在线调整系统、任务和交互以适应特定用户(Fairclough,2022 年)。目前,市场上需要廉价的脑电图 (EEG) 设备和软件包,它们可以捕捉自愿和非自愿引起的大脑活动,并将这种活动转化为环境和设备的控制和通信命令。此外,最近对深度网络在 BCI 应用中的使用的研究有所增加,并有望提高 BCI 系统的准确性(Craik 等人,2019 年)。总体而言,低成本非侵入式神经技术的可用性在医疗和消费者神经技术的交叉领域带来了一些伦理和监管挑战。尽管基于 EEG 的 BCI 在稳健性和带宽方面受到限制,但它们仍然是迄今为止最容易获得的 BCI 类型,可用于探索其在游戏、娱乐、教育和艺术等领域的潜在用途。虽然临床上的大部分 BCI 研究越来越依赖于侵入式记录,但这种方法距离非医疗应用很可能还有几十年的时间。HCI 研究人员对 BCI 的兴趣日益增加,因为技术行业正在扩展到效率不是主要关注目标的应用领域。家庭或公共空间使用信息和通信技术提高了人们对情感、舒适度、家庭、社区或娱乐性的重要性的认识,而不是效率。因此,除了需要效率和精度的非临床 BCI 应用外,本研究主题还涉及 BCI 在各种类型的家庭、娱乐、教育、体育和健康应用中的使用。这些应用程序可以与单个用户以及多个合作或竞争用户相关。我们还看到艺术家们对利用此类设备设计交互式艺术装置的兴趣重新燃起,这些装置可以了解单个用户或集体大脑的大脑活动
近十年来,脑机接口 (BCI) 技术已进入非临床应用的主流人机交互 (HCI) 研究。BCI 已成为多模式交互研究的一部分,作为技术系统用户的附加交互模式。BCI 还成为研究的一部分,其中神经生理数据为系统提供有关用户情感和心理状态的信息,从而可以在线调整系统、任务和交互以适应特定用户(Fairclough,2022 年)。目前,市场上需要廉价的脑电图 (EEG) 设备和软件包,它们可以捕捉自愿和非自愿引起的大脑活动,并将这种活动转化为环境和设备的控制和通信命令。此外,最近对深度网络在 BCI 应用中的使用的研究有所增加,并有望提高 BCI 系统的准确性(Craik 等人,2019 年)。总体而言,低成本非侵入式神经技术的可用性在医疗和消费者神经技术的交叉领域带来了一些伦理和监管挑战。尽管基于 EEG 的 BCI 在稳健性和带宽方面受到限制,但它们仍然是迄今为止最容易获得的 BCI 类型,可用于探索其在游戏、娱乐、教育和艺术等领域的潜在用途。虽然临床上的大部分 BCI 研究越来越依赖于侵入式记录,但这种方法距离非医疗应用很可能还有几十年的时间。HCI 研究人员对 BCI 的兴趣日益增加,因为技术行业正在扩展到效率不是主要关注目标的应用领域。家庭或公共空间使用信息和通信技术提高了人们对情感、舒适度、家庭、社区或娱乐性的重要性的认识,而不是效率。因此,除了需要效率和精度的非临床 BCI 应用外,本研究主题还涉及 BCI 在各种类型的家庭、娱乐、教育、体育和健康应用中的使用。这些应用程序可以与单个用户以及多个合作或竞争用户相关。我们还看到艺术家们对利用此类设备设计交互式艺术装置的兴趣重新燃起,这些装置可以了解单个用户或集体大脑的大脑活动
氢气被用于应对气候挑战,尤其是在重型运输和工业应用等难以脱碳的应用领域,以及通过长时储能实现清洁电网,因此越来越受到人们的关注[1,2]。氢气在众多成熟领域和若干发展中应用领域中都具有巨大潜力[3]。虽然人们在交通领域的氢能和燃料电池技术研发方面已经做出了巨大努力[4-9],但人们对固定式应用的兴趣正在重新燃起。特别是大型固定式应用,它们没有像燃料电池电动汽车那样严格的限制,例如储能密度、储能系统质量和热管理,是采用氢能技术的主要候选对象[10]。然而,要想取代任何现有技术,新技术的成本和性能都至关重要。要想广泛采用氢气,生产成本是关键。为推动该领域的进步,美国能源部 (DOE) 于 2021 年宣布了“氢能计划”,这是“能源地球计划”中的第一个计划,旨在加速清洁能源解决方案的突破。“能源地球计划”的重点是将清洁氢能的生产成本在 10 年内降低 80% 至每公斤 1 美元,从而实现氢能的大规模部署 [11]。氢能可用于满足备用电源的需求,因为它具有大规模、长期和与电网解耦的储能能力。氢基技术可以提供稳定、可靠的离网电力,在停电时可快速提供并按需供电。提供应急服务的关键设施,例如医院、警察局和消防站、供水和废水处理设施以及用于支持基本公共服务的通信系统,通常依靠备用柴油发电机来确保电网断电时的持续供电。例如,供水设施需要能够维持水压以扑灭毁灭性的火灾。此外,工业区、港口和机场等未达标区域不符合主要空气污染物标准,是氢气可以解决减排问题的另一个领域。美国环境保护署 (EPA) 维护 EPA 绿色
圣母玛利亚(第二部分) 玛利亚向教会表达了母爱,教会在五旬节等待圣灵的降临。当她在世上度过生命之时,她被带到天堂,在荣耀中与圣徒们一同统治。玛利亚仍然在参与她儿子耶稣的使命。她以母亲般的关怀为那些现在在世上面临考验和困难的人代祷。她让所有向她投以目光的人重新燃起信仰和爱。从教会早期到现在,玛利亚一直因上帝赐予她的礼物和她给世界的恩惠而受到尊敬。“万代都要称我有福。全能者为我行了大事,”她在《尊主颂》中预言道。一年中玛利亚的许多节日表明她与耶稣的奥秘有着密切的联系,也表明了几个世纪以来基督徒对她的爱。在降临节和圣诞节期间,人们经常想起她在耶稣诞生中扮演的特殊角色。圣母玛利亚节(1 月 1 日)庆祝她在上帝救赎计划中的地位。一年中的其他两个“圣诞节”节日也纪念她:天使加百列报喜节(3 月 25 日)和耶稣献殿节(2 月 2 日)。圣母无染原罪节(12 月 8 日)庆祝人们相信圣母玛利亚自其母腹中受孕以来,就未受原罪的玷污。圣母升天节纪念圣母玛利亚的肉体和灵魂进入天堂。9 月 8 日是圣母玛利亚的生日。11 月 21 日是她献给上帝的日子。9 月 15 日是她忍受的痛苦。几个世纪以来对圣母玛利亚的特殊敬礼也可以在教会的日历中找到:1858 年圣母玛利亚在卢尔德显灵(2 月 11 日)、圣母无玷圣心节(5 月 31 日)、加尔默罗山圣母节(7 月 16 日)以及圣母玛利亚女王节(8 月 22 日)。教会对圣母玛利亚的敬礼并不局限于一天或几个特殊的节日。通过每天的祈祷和虔诚的行为,例如念玫瑰经,人们在一年中不断地缅怀她。她被天使称赞为“充满恩宠”的她,像她激励使徒们一样,激励着今天的教会,带着对她儿子耶稣基督的忠诚之爱。救赎主的慈母,酵母之门,海洋之星,请帮助那些跌倒却努力再次站起来的人民。您接受了加百列的欢乐问候,请怜悯我们这些可怜的罪人。
自古以来,人们就种植亚麻 ( Linum usitatissimum L. ) 以获取种子和纤维 ( Vaisey-Genser 和 Morris,2003 年 )。纤维亚麻比亚麻籽高,仅在茎的上部有分枝。亚麻籽的分枝从茎的中部开始,这些植物会产生许多大种子 ( Diederichsen 和 Richards,2003 年 )。亚麻籽富含 omega-3 脂肪酸和木脂素,其健康益处已在许多研究中得到证实 ( Caligiuri 等人,2014 年;Goyal 等人,2014 年;Kezimana 等人,2018 年;Parikh 等人,2019 年 )。因此,亚麻籽被用于食品和制药工业、动物饲料以及环保涂料和复合材料的生产(Singh 等人,2011;Corino 等人,2014;Goyal 等人,2014;Campos 等人,2019;Fombuena 等人,2019)。亚麻纤维是主要由纤维素组成的空心管;它们具有高强度和耐久性,可用于生产高质量的纺织品(Vaisey-Genser 和 Morris,2003)。亚麻纤维由于表面的芯吸和水分移动而具有很高的吸水能力,可用于制作炎热气候下的布料、帆、帐篷和地毯(Atton,1989)。然而,只有从亚麻茎的没有分支的部分才能获得长纤维;因此,尽管亚麻纤维质量很高,但它在很大程度上已被合成纤维所取代 ( Muir 和 Westcott,2003 年)。然而,对生态问题的认识引起了人们对使用对地球更具可持续性的材料的关注,人们对亚麻纤维的兴趣正在重新燃起。此外,在过去几年中,亚麻纤维已被积极用作复合材料的组成部分,在汽车、航空航天和包装应用中具有良好的潜力,在这些应用中,纤维长度并不十分重要 ( Zhu 等人,2013 年;Mokhothu 和 John,2015 年;Wu 等人,2016 年;Dhakal 和 Sain,2019 年;Fombuena 等人,2019 年;Goudenhooft 等人,2019 年;Zhang 等人,2020 年 a)。 2012 年,亚麻品种 CDC Bethune 的基因组在 Illumina 平台上进行了测序,采用双端和配对文库。结果组装结果为 302 Mb,其中 scaffild N50 约为 700 kb,contig N50 约为 20 kb,亚麻基因组覆盖率估计为 370 Mb,为 81%(Wang et al., 2012)。15 对 CDC 染色体的染色体水平组装
能够生长出二维 (2D) 材料等尖端晶体材料的高质量异质外延膜,是开发前沿技术应用的先决条件。二维材料(及其异质结构)是一种堆叠结构,相邻块之间具有弱范德华 (vdW) 相互作用,而每个块内具有强共价键。这一特性使得我们有可能分离二维晶片,将其用作构建块,以创建堆叠的二维晶体序列(称为 vdW 异质结构),这种结构具有新奇的特性和奇特的物理现象。[1,2] vdW 异质结构为电子学、光电子学、柔性器件、传感器和光伏等领域的广泛应用铺平了道路。[3–5] 然而,要实现工业化应用,就必须发展大规模沉积,这就意味着必须掌握 vdW 外延生长技术。 [6] 尽管过去几年人们对范德华外延的兴趣重新燃起,研究工作也愈发深入,[7] 但对范德华外延的一般描述和完整理解将有助于快速解决许多问题。例如,当使用石墨烯或其他二维晶体作为缓冲层时,对于范德华外延,下面的衬底仍可能与正在生长的薄膜相互作用。[8–15] 人们还观察到了二维和三维材料生长之间的中间行为,实际上允许在这些材料中进行应变工程。[16–21] 因此,二维材料的外延规则非常有必要,以便预测衬底表面相互作用、范德华异质结构可比性和界面生长过程中的应变弛豫。范德华能隙的形成是决定二维材料行为的基本特征。[22] 在这方面,衬底表面的电子特性和形貌在薄膜生长的早期阶段起着关键作用。生长中的薄膜和基底之间的键可以形成在悬空键和缺陷上[13,23],也可以形成在扭结和台阶边缘,从而阻止范德华能隙的形成并决定应变的积累。[16]基底和外延层之间的不同对称性也会引起一定量的应变。[24]因此,如果沉积的2D材料没有完全弛豫,则不会发生范德华外延。为了对范德华外延进行一般性描述,我们在这里研究了一个基于硫族化物 (GeTe) m (Sb 2 Te 3 ) n 合金 (Ge-Sb-Te 或 GST) 的示例案例,该合金位于 InAs(111) 表面上。GST 是一种关键的相变材料 (PCM),因其尖端技术应用而得到广泛研究。它是一种突出的
