本研究假设颗粒物附着有化学/生物制剂和放射性物质,对颗粒物的爆炸散射现象进行了热流体力学数值模拟,并进行了模拟颗粒散射实验来验证计算模型。去了。
免责声明:本出版物中包含的信息基于撰写时(2024 年 11 月)的知识和理解,可能不准确、不最新或不完整。新南威尔士州(包括初级产业和区域发展部)、作者和出版商对文件中包含的任何信息(包括第三方提供的材料)的准确性、时效性、可靠性或正确性不承担任何责任。读者在做出与本出版物中包含的材料相关的决定时,应自行查询并依靠自己的建议。
摘要 - 非常纠正一系列错误的代码引起了显着关注。最重要的原因之一是,在某些新兴技术(例如DNA存储)中发生了误差爆发。在本文中,我们研究了一种称为A(t,s)爆炸的错误,该错误删除了连续的符号并在同一坐标处插入s任意符号。请注意,A(t,s)爆炸误差可以看作是插入爆发(t = 0),删除爆发(s = 0)和替换(t = s)的概括。我们的主要贡献是给出Q -ary(t,s)的显式构造 - 启动校正log n + o(1)冗余位的校正代码,对于任何给定的恒定非负整数t,s和q≥2。这些代码具有最佳的冗余,直到添加剂常数。此外,我们应用我们的(t,s) - 启动校正代码来对抗其他各种类型的错误并改善相应的结果。特别是,我们的副产品之一是一个置换代码,能够纠正具有log n + o(1)冗余位的t稳定删除的爆发,这是最佳的添加剂常数。
摘要:由真菌杂草虫L.引起的大米爆炸被认为是对世界大米生产的主要威胁之一。抗性品种的发展是最好的,可持续的控制替代品之一。植物育种工作已通过遗传图(连锁和关联)和标记辅助选择加速。On the other hand, genomic editing techniques, such as meganucleases (MNs), Zinc-finger nucleases (ZFNs), Transcription Activa tor–like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindrome Repeats/ CRISPR-associated protein 9 (CRISPR/Cas9), can be used to promote specific genetic modifications.同样,转基因也可以用于操纵特定基因。从这个意义上讲,这项工作旨在表征大米爆炸并阐明可用的生物技术替代方法,以加速改善水稻品种对水稻爆炸具有耐药性的发展。关键词:非生物压力,生物技术工具,Oryza sativa L.,pyricularia oryzae L.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---------------------------这是根据创意共享归因许可条款的开放式访问文章,如果适当地引用了原始工作,允许在任何媒介中使用,分发和复制。©2021作者。Wiley Wendericals LLC出版的农业综合企业
摘要 - JVC 0.2是带有轨道的爆炸性军械处置(EOD)机器人,具有5度的自由度(DOF)手臂,以及由圣奥古斯汀国立大学(UNSA)(UNSA)开发的两指握力,以及爆炸性的爆炸性军械处置单位,以供应8次措施,以供应8次措施,以供应8次措施,以供应均等的措施,以供应量的措施,以供应额外的措施。在秘鲁,Urban Multi-Terrain运动技能,机器人手臂控制以及在UDEX数据库中注册的大小和权重的爆炸物体处理。本文档的目的是根据国家标准技术研究所(NIST)标准制定和测试机器人的机动性,运动和手臂力量,适应UDEX的需求,以保护UDEX的需求,以维护爆炸性的军械处置专家(TEDAX)。进行了测试程序,以根据可操作性来评估机器人的功能,并旨在计算模拟爆炸物在不同倾向到容器的物体的运输时间。测试向我们表明,机器人臂的致动时间得到了改善,它可以以20°的最大倾斜度攀爬楼梯,在平坦地面上测量的运动速度为10.94 cm/s,并且在伸出的手臂处的负载能力为9 kg。最后,我们得出的结论是,有必要更新机器人的设计,以减轻重量以满足工作中的安全标准,将负载能力提高到10公斤,并提高移动性;因此,它成为Tedax的日常使用。关键字 - 探索机械处置(EOD)机器人,机器人手臂,抓地力,爆炸性,设计,轨道
一系列喷射/冲击波是由点燃氧气和乙炔混合气体引起的可控爆炸产生的。冲击波的高能量和爆炸产生的温度使粉末有效地沉积在所需的部件上。通过与粉末喷射同步移动部件,可以实现更厚的粉末沉积层。作为一种专有工艺,爆炸喷涂系统 (Mark I) 于 1997 年在印度本土制造,采用机械移动部件供气。随后,该技术被转让给印度的多位企业家。系统性能非常出色,对民用和战略部门的贡献非常突出。为了满足当前市场需求并与其他热喷涂系统竞争,现在已开发出一种新版本,它具有更高的点火频率、更长的操作时间和通过精确的气体控制实现高质量点火。
虽然 RDE 已经开发和测试了很多年,但自从 NASA 开始研究其“月球到火星”任务架构以来,该技术就引起了广泛关注。从理论上讲,该发动机技术比传统推进和依赖受控爆炸的类似方法更有效。2022 年夏天,先进推进开发商 In Space LLC 和印第安纳州拉斐特的普渡大学合作,在马歇尔对 RDRE 进行了首次热火测试。
基本的局部比对搜索工具(BLAST)是一个程序,该程序报告了数据库中查询序列和序列之间的局部相似性区域(在核苷酸或蛋白质水平上)。检测序列同源性的能力使我们能够确定基因或蛋白质是否与其他已知基因或蛋白质有关。检测序列同源性还促进了由多个基因共享的保守域和基因家族成员的鉴定。BLAST之所以流行,是因为它可以有效地识别两个序列之间局部相似性的区域。更重要的是,BLAST基于强大的统计框架。此框架允许BLAST确定两个序列之间的比对是否具有统计学意义(即,获得与该分数或更高偶然得分的比对的概率很低)。在进行注释之前,重要的是要了解我们在分析中使用爆炸时所做的推论。进化论的理论提出,所有生物体都通过共同祖先的形成降临。在分子水平上,祖先DNA序列随时间差异(通过点突变的积累,重复,缺失,转置,重组事件等)在
摘要。驱动性旋风和大气河流的爆炸性发展对于在延期中部的极端天气中(例如复合风暴 - 流量事件)起着至关重要的作用。尽管众所周知的旋风和大气河流都有充分的了解,并且以前已经对其关系进行了研究,但我们对温暖气候如何影响其同意的理解仍然存在差距。在这里,我们专注于评估当前的气候学,并评估北大西洋大气河流与爆炸性气旋之间未来同意的变化。为实现这一目标,我们独立检测和跟踪大气河流和热带气旋,并研究它们在ERA的同意。与文献一致,大气河流在爆炸性旋风的附近经常被检测到所有数据集中的非爆炸旋风,并且将来大气河强度在所有情况下都会增加。此外,我们发现,与没有的河流相关的爆炸性气旋比没有的河流往往更长,更深。值得注意的是,我们确定了旋风和大气河并发的显着而系统的未来增加。最后,在高排放情况下,爆炸性的旋风和大气河并发显示了与西欧相比的增加和模型一致性。因此,我们的工作在CMIP6气候预测中提供了爆炸性气旋和大气河之间的新统计关系,以及其强度和位置的关节变化的表征。