† 通讯作者 Riyi Shi,医学博士,哲学博士,625 Harrison St,West Lafayette,IN 47907,电话:(765)-494-6446,传真:(765)-494-7605,riyi@purdue.edu,William A. Truitt,哲学博士,320 W 15th St Office #314G,Indianapolis,IN 46202,电话:(317)-278-9050,btruitt@iu.edu。 * 同等贡献作者 作者贡献(CRediT 声明) Nicholas Race:概念化、方法论、调查、验证、分析、写作 - 原始草稿和修订、可视化 Katharine Andrews:概念化、方法论、调查、验证、分析、写作 - 原始草稿和修订、可视化 Elizabeth Lungwitz:概念化、方法论、调查、验证、分析、写作 - 原始草稿和修订、可视化 Sasha Vega-Alvarez:概念化、方法论、调查、验证、分析、写作 - 原始草稿和修订、可视化 Timothy Warner:调查、分析、写作 - 修订 Glen Acosta:调查、分析、写作 - 修订 Jiayue Cao:调查、分析、写作 - 修订 Kun-han Lu:调查、分析、写作 - 修订 Zhongming Liu:概念化、方法论、分析、写作 - 修订、监督 Amy Dietrich:调查、验证、分析、写作 - 修订 Sreeparna Majumdar:调查、验证、分析、写作-修改 Anantha Shekhar:分析、写作-修改、监督 William Truitt:概念化、方法论、分析、写作-修改、监督 Riyi Shi:概念化、方法论、分析、写作-修改、监督
† 通讯作者 Riyi Shi,医学博士,哲学博士,625 Harrison St,West Lafayette,IN 47907,电话:(765)-494-6446,传真:(765)-494-7605,riyi@purdue.edu,William A. Truitt,哲学博士,320 W 15th St Office #314G,Indianapolis,IN 46202,电话:(317)-278-9050,btruitt@iu.edu。 * 同等贡献作者 作者贡献(CRediT 声明) Nicholas Race:概念化、方法论、调查、验证、分析、写作 - 原始草稿和修订、可视化 Katharine Andrews:概念化、方法论、调查、验证、分析、写作 - 原始草稿和修订、可视化 Elizabeth Lungwitz:概念化、方法论、调查、验证、分析、写作 - 原始草稿和修订、可视化 Sasha Vega-Alvarez:概念化、方法论、调查、验证、分析、写作 - 原始草稿和修订、可视化 Timothy Warner:调查、分析、写作 - 修订 Glen Acosta:调查、分析、写作 - 修订 Jiayue Cao:调查、分析、写作 - 修订 Kun-han Lu:调查、分析、写作 - 修订 Zhongming Liu:概念化、方法论、分析、写作 - 修订、监督 Amy Dietrich:调查、验证、分析、写作 - 修订 Sreeparna Majumdar:调查、验证、分析、写作-修改 Anantha Shekhar:分析、写作-修改、监督 William Truitt:概念化、方法论、分析、写作-修改、监督 Riyi Shi:概念化、方法论、分析、写作-修改、监督
由MEMS技术制造的压电性冲击加速度计具有低功耗,同时仍以大于50公斤的加速度提供+/- 200 mV的全尺度输出。加速度计与用于调节应变量表的相同类型的4线电路电气兼容,并且由于与应变计相比,它们的输出要大得多,因此信号放大的需求大大降低了。与机械隔离的ICP®加速度计相比,它们具有更大的工作温度范围。他们的频率响应(取决于模型)可以从直流(0 Hz)到高达20 kHz的值均匀。为了减轻响应的严重性时,当它们的谐振频率被激发时,它们结合了挤压膜阻尼,达到了0.02至0.06的临界值。这些阻尼值远高于传统MEMS加速度计中的阻尼值。由于硅是一种脆性材料,因此还合并了范围停止以最大程度地减少传感元件的破裂,然后将传感元件密封在密封包装中。在可比的G级别上,MEMS技术使单个加速度计的最小封装大小。
我们认可为指导和指导该项目而成立的专家小组的工作。在审查本报告及其附件时,我们咨询了该小组成员各自的专业知识和经验。具体来说,我们感谢 Simon Bagshaw(人道协调厅)、Zsuzsanna Balogh(北约总部 SACT)、John Borrie(联合国裁军研究所)、Maya Brehm(日内瓦国际人道主义法和人权学院)、Kimberly Brown(英国红十字会)、Hannah Bryce(皇家国际事务研究所)、Judy Grayson(联合国儿童基金会)、Eliot Higgins(Bellingcat)、Benjamin King(小型武器调查局)、Colin King(Fenix Insight Ltd.)、Clare Knock(克兰菲尔德大学)、Kathleen Lawand(红十字国际委员会)、Iain Overton(武装暴力行动)、Thomas de Saint Maurice(红十字国际委员会)、Robert Sheldon(克兰菲尔德大学)、Alexander Stolz(弗劳恩霍夫 EMI)和 Christina Wille(Insecurity Insight)。我们感谢 Sean Moorhouse (独立) 对爆炸性武器研究 (本报告附件) 的全面研究。我们感谢 Stefan Elliott (ARES) 和 Yuri Lyamin (ARES) 为本报告提供技术信息和重要数据的贡献。最后,我们感谢日内瓦国际与发展研究生院 (IHEID) 指派 Prerna Bhagi、Kenneth Iannuzzi 和 Sofya Omelchenko 对所研究的爆炸性武器的使用案例进行全球研究。
浸渍剥离法的优点是它是最温和的测试方法,如果化学物质对冲击敏感,这一点很重要。它还有另一个显著的优点:它可以在一定程度上检测二烷基过氧化物、多过氧化物和环状过氧化物,而其他方法(也许硫酸钛法除外)无法有效检测这些化合物。一些溶剂,特别是异丙醚和二恶烷,可能会形成大量且危险的这些高反应产物。此外,标准的过氧化物去除程序可能会去除所有的氢过氧化物,但会留下危险水平的烷基过氧化物、多过氧化物和环状过氧化物。常规的硫氰酸亚铁和碘法在这种情况下可能会产生假阴性,但浸渍剥离法可能会检测到剩余的过氧化物,尽管可能不是定量的。然而,浸渍剥离法很难用于与水不混溶的低挥发性化学品。