多种有限元 (FE) 模型可用于预测人脑与爆炸波相互作用后产生的生物力学反应,这些模型已证实纳入脑表面回旋、主要脑静脉以及使用非线性脑组织特性来提高模型准确性的重要性。我们假设,纳入更详细的脑静脉和动脉网络可进一步增强模型预测的生物力学反应,并有助于识别爆炸引起的脑损伤的相关因素。为了更全面地捕捉人脑组织对爆炸波暴露的生物力学反应,我们将之前已验证可承受钝性撞击的三维 (3-D) 详细脉管人头 FE 模型与 3-D 冲击波管 FE 模型耦合在一起。利用耦合模型,我们计算了人头面对来袭爆炸波时,爆炸过压 (BOP) 相当于 68、83 和 104 kPa 的生物力学反应。我们通过将模型预测的颅内压 (ICP) 值与之前在尸体头部进行的冲击波管实验收集的数据进行比较,验证了我们的 FE 模型,该模型包括详细的脑静脉和动脉网络、脑回和脑沟以及高粘弹性脑组织特性。此外,为了量化包含更全面的脑血管网络的影响,我们将详细血管模型与简化血管模型和无血管模型在相同爆炸载荷条件下的生物力学响应进行了比较。对于三个 BOP,预测的 ICP 值与额叶的实验结果非常吻合,峰值压力差异为 4 – 11%,相移差异为 9 – 13%。正如预期的那样,加入详细的脑血管系统不会影响 ICP,但是,它会使峰值脑组织应变重新分布多达 30%,并产生高达 7% 的峰值应变差异。与仅包含主要脑静脉的现有减少血管 FE 模型相比,我们的高保真模型重新分布了大部分脑组织的应变,这凸显了在人头 FE 模型中加入详细的脑血管网络的重要性,以便更全面地解释爆炸暴露引起的生物力学反应。
抽象创伤性脑损伤(TBI)是全球发病率和死亡率的主要原因。tbi通常在失去运动,认知和感觉功能的人中可以看到。TBI引起严重的健康问题,例如死亡,残疾和精神疾病。TBI在世界范围内仍然是越来越多的健康问题。据估计,每年约有170万人患头部创伤,其中约有50,000人死亡。尽管在所有年龄段和人口中都可以看到TBI,但发病率最高的年龄人口是儿童和老年人。跌倒,运动活动和机动车事故是TBI的最大风险因素。要开发出创伤性脑损伤的诊断和治疗方法,应知道神经病理学下的分子和细胞机制。因此,使用了轻度,中度和严重的实验性创伤性脑损伤模型的不同模型。创伤性脑损伤的动物模型被广泛归类为局灶性,弥漫性和混合损伤。流体打击乐,受控的皮质效应,减轻体重和爆炸波是创伤性脑损伤实验研究中最优选的模型。本综述描述了当前啮齿动物脑损伤的啮齿动物模型的优势和缺点。关键词:实验性创伤性脑损伤模型,体重下降