地面飞机轨迹预测是空中交通管制和管理的主要关注点。安全有效的预测是实施新自动化工具的先决条件。在当前的操作中,轨迹预测是使用物理模型计算的。它模拟作用在飞机上的力,以预测未来轨迹的连续点。使用这样的模型需要了解飞机状态(质量)和飞机意图(推力定律、速度意图)。大部分这些信息对于地面系统来说是不可用的。本文重点关注爬升阶段。我们通过预测一些未知的点质量模型参数来提高轨迹预测精度。这些未知参数是质量和速度意图。本研究依赖来自 OpenSky 网络的 ADS-B 数据。它包含该传感器网络检测到的 2017 年的爬升段。研究了 11 种最常见的飞机类型。获得的数据集包含来自世界各地的数百万个爬升段。爬升段未根据其高度进行过滤。使用机器学习方法从该数据集中学习返回缺失参数的预测模型。训练后的模型在一年的最后两个月进行测试,并与基线方法(使用 BADA 和前十个月计算的平均参数)进行比较。与此基线相比,机器学习方法降低了海拔高度的 RMSE
摘要 高效的轨迹预测工具将成为未来基于轨迹的运营 (TBO) 的关键功能。除了管制员的行动之外,爬升飞行中的不确定性是飞行轨迹预测误差的主要组成部分。出于运营方面的考虑,飞机起飞重量和爬升速度意图(定义爬升剖面的关键性能参数)并不完全适用于基于回合的轨迹预测基础设施。在空中交通流量管理范围内,扇区进入和退出时间(包括爬升结束和下降开始的时间)是需求容量平衡过程的主要输入。在这项工作中,我们专注于爬升轨迹的不确定性,以量化和分析它们对爬升至巡航高度的时间的影响。我们通过飞机飞行记录数据集(即 QAR)使用了模型驱动的数据统计方法。根据此分析,为飞机起飞重量和速度意图生成了概率定义。获得了这些爬升参数与飞行距离之间的回归,以减少战略层面的不确定性。此外,通过自适应不确定性减少来降低爬升不确定性也在飞行战术层面得到体现。通过模拟,说明了降低飞机质量不确定性对爬升时间的影响。关键词:空中交通管理、轨迹预测、不确定性量化、BADA 缩写
高效的轨迹预测工具将成为未来基于轨迹的运营 (TBO) 的关键功能。除了控制器操作之外,爬升飞行中的不确定性是飞行轨迹预测误差的主要组成部分。由于运营问题,飞机起飞重量和爬升速度意图(定义爬升曲线的关键性能参数)并不完全适用于基于回合的轨迹预测基础设施。在空中交通流量管理范围内,扇区进入和退出时间(包括爬升结束和下降开始的时间)是需求容量平衡过程的主要输入。在这项工作中,我们专注于爬升轨迹的不确定性,以量化和分析它们对爬升到巡航高度的时间的影响。我们通过飞机飞行记录数据集(即QAR)使用了模型驱动的数据统计方法。分析结果为飞机起飞重量和速度意图生成了概率定义。获得了这些爬升参数与飞行距离之间的回归,以减少战略层面的不确定性。此外,通过自适应不确定性减少来降低爬升不确定性也在飞行战术层面得到证明。通过模拟,说明了降低飞机质量不确定性对爬升时间的影响。关键词:空中交通管理、轨迹预测、不确定性量化、BADA 缩写
出站飞机 22.1 离场航班 22.1 IFR 离场建议指示 22.1.1 RWY 18:爬升 MAG 183° 至 1011(600),然后直接航线爬升至航路安全高度。 RWY 18:爬升 RM 183° 至 1011(600),然后直接爬升至航路安全高度。 RWY 36:爬升 MAG 003° 至 1011(600),然后直接航线爬升至航路安全高度。 RWY 36:爬升 RM 003° 至 1011(600),然后直接爬升至航路安全高度。
爬升 RM 230° 至 3 海里 CNA。在 3 NM CNA 处,右 RM 066° 向指定的 FL 爬升以拦截并跟随 RDL 025° CNA (RM 025°) 前往 POI。VAGNA 2E VAGNA 2W 用于 ACFT 目的地 BORDEAUX。用于 ACFT 目的地 BORDEAUX。爬升 RM 050° 至 CNA 3 海里。在 3 NM CNA 处,右 RM 214° 向指定的 FL (FL 110 MAX) 爬升,拦截并跟随 RDL 174° CNA (RM 174°)。在 RDL 045° BMC 处,向右(RM 225°)朝向 VAGNA。
EVA 15:“收到,EVA 15 重型,爬升通过 1,900 到达 5,000 ” 南加州出发:“你好,EVA 015 重型,南加州出发,雷达接触,爬升并保持 7,000。朝 090 飞行。” EVA 15:“爬升并保持 7,000,确认航向?” (1) 南加州出发:“航向 090,到 7,000,EVA 015 重型。” EVA 15:“航向 090,7,000 EVA 015 重型。” … 南加州出发:“ (无法读取)...180 (2),爬升并保持 7,000。” EVA 15:“左航向 180,(3)爬升并保持 7,000 EVA 15 重型。” EVA 15:“EVA 15 重型,请求高速爬升。” SoCal 出发:“EVA 15 重型,按照请求批准。” EVA 15:“批准,EVA 015 重型” SoCal 出发:“..右转,转向 180。” EVA 15:“已收到,右转 180,EVA 15 重型。”(4)SoCal 出发:“重型,请加快右转。”
任务 A. 正常起飞和爬升................................................................................................................................ 34 任务 B. 正常进近和着陆............................................................................................................................... 35 任务 C. 软场起飞和爬升(ASEL)......................................................................................................................... 37 任务 D. 软场进近和着陆(ASEL)..................................................................................................... 38 任务 E. 短场起飞和最大性能爬升(ASEL、AMEL)............................................................................. 39 任务 F. 短场进近和着陆(ASEL、AMEL)............................................................................................. 41 任务 G. 受限区域起飞和最大性能爬升(ASES、AMES)............................................................................. 42 任务 H. 受限区域进近和着陆(ASES、AMES)............................................................................................. 44 任务 I. 玻璃水面起飞和爬升(ASES、AMES)............................................................................................. 45 任务 J. 玻璃水面进近和着陆(ASES、AMES)............................................................................................. 46 任务 K.浪高水面起飞和爬升(ASES、AMES)............................................................................................. 47 任务 L. 浪高水面进近和着陆(ASES、AMES)....................................................................................... 49 任务 M. 滑行着陆(ASEL、ASES)....................................................................................................... 50 任务 N. 复飞/中断着陆.................................................................................................................... 52 任务 O. 断电 180° 精度进近和着陆(ASEL、ASES)......................................................................... 53
上个月我们完成了如何减少锯齿状爬升数据和确定最陡角度爬升速度 V x 以及相关爬升角度和爬升梯度的说明。本月我们将解决下降性能问题,如果您认为下降只不过是反向爬升,那么您基本上是对的。如何让飞机获得最佳下降性能可能是您在巡航前往目的地时讨论的问题。与副驾驶或乘客开玩笑是一种很好的方法——砰!发动机熄火了。现在怎么办?有一件事是肯定的。现在不是思考飞机最佳滑行速度的好时机。更好的时间是您的下一次飞行,确定飞机的滑行性能比我们在过去几个月中详细介绍的爬升性能测试更容易。飞机的爬升率取决于功率的大小
RWY 11:以 4.7%(1)的速度爬升 RM 111°,直至 5000(4114)。在 1500(614)处直接上坡至航路安全高度。 (1)理论爬升坡度,确定障碍物,距离 DER 728 米、轴线右侧 116 米处的 993 英尺树。如果我们忽略这个障碍,位于 Ballon de Servance 的 4186 英尺(3300 英尺)的起伏,在 081° 处,距离 LXI 17.8 海里,产生 4.7% 的坡度,最高可达 5000(4114)。 RWY 29:以 5.4%(1)的速度爬升 RM 291° 至 970(118),然后以 4%(2)的速度爬升至 5000(4148)。在 1500(648)处直接上坡至航路安全高度。 (1)理论爬升坡度,确定障碍物,距离 DER 552 米、轴线左侧 120 米处有 950 英尺的树。 (2)理论爬升坡度,确定障碍物,地势高程 4186 英尺(3300 英尺),位于 Ballon de Servance,081°,距 LXI 17.8 海里。
摘要 迄今为止研究的太空电梯主要是爬升式,即用缆绳连接地面和空间站,爬升器沿着缆绳上升和下降来运送有效载荷。然而,这种类型的系统存在一些问题,例如难以为爬升器提供能量,并且由于运行过程中缆绳和爬升器车轮的磨损,使用寿命较短。为了避免这些问题,在本研究中,我们研究了一种新型的配重式太空电梯。该系统由两根缆绳组成:一根承受施加在结构上的张力的导向缆绳和一根连接两个吊舱的移动缆绳,吊舱两端各一根,连接到空间站的驱动轮上,通过驱动车轮来运送吊舱中的有效载荷。在本研究中,我们利用我们小组开发的点质量缆绳模型分析了在空间站和地面之间应用配重式缆绳时的缆绳动力学,并计算了实际运行所需的能量。因此,当在火星重心(海拔 3,900 公里)和地面之间使用平衡型,而在高于该高度使用爬升型时,该系统消耗的能量比传统的爬升型太空电梯要少。关键词:空间科学、空间技术、太空电梯命名法