2018 年 2 月 20 日 08:38,一架 F-16CM,尾号 (T/N) 92-3883,在从日本三泽空军基地 (AB) 起飞的例行训练飞行中发生发动机起火,必须立即降落回三泽空军基地。事故飞机 (MA) 驻扎在日本三泽空军基地,隶属于第 35 战斗机联队第 13 战斗机中队。MA 发动机受损,外部油箱丢失,政府损失估计为 987,545.57 美元。事故航班 (MF) 由两架 F-16CM 飞机组成。事故航班的飞行前检查、起飞和滑行都平安无事,直到起飞阶段。事故飞行员 (MP) 离开 28 号跑道 (RWY),比事故长机飞行员 (MLP) 晚 15 秒。加力起飞后不久,三泽空中交通管制员通知 MP 和事故领航员 (MLP),MP 飞机后部出现大火。MLP 还就火灾问题联系了 MP。在 MP 上升过程中,他注意到空速和爬升率意外下降。MP 右转返回 28 跑道,当无法保持空速或高度时,MP 按照 F-16CM 关键行动程序抛弃了外挂物(外部油箱)。抛弃后,MA 恢复了一些空速,并实现了更好的爬升率,进入着陆位置。MP 降落在 28 跑道上,并完成了紧急发动机关闭和紧急地面出口
美国空军启动了两项 C-5 现代化改造计划,GE 的 F138(CF6-80C2 涡扇发动机的军用型号)被选为新指定的 C-5M 超级银河的动力。F138 不负众望,预计可节省 200 亿美元的运营成本,可进入两倍多的机场,并且不加油航程增加 27%,从而避免了许多任务中的空中加油。该发动机的推力也增加了 22%,起飞滑跑距离缩短了 30%,爬升率提高了 58%;并且它使 C-5M 能够携带更重的有效载荷飞行更远的距离。
上个月我们完成了如何减少锯齿状爬升数据和确定最陡角度爬升速度 V x 以及相关爬升角度和爬升梯度的说明。本月我们将解决下降性能问题,如果您认为下降只不过是反向爬升,那么您基本上是对的。如何让飞机获得最佳下降性能可能是您在巡航前往目的地时讨论的问题。与副驾驶或乘客开玩笑是一种很好的方法——砰!发动机熄火了。现在怎么办?有一件事是肯定的。现在不是思考飞机最佳滑行速度的好时机。更好的时间是您的下一次飞行,确定飞机的滑行性能比我们在过去几个月中详细介绍的爬升性能测试更容易。飞机的爬升率取决于功率的大小
“状态良好!”试飞员在飞机对讲机中呼叫,同时将测试的 Chinook 直升机稳定在所需的空速、爬升率和倾斜角参数范围内。这是新加坡共和国空军 (RSAF) Chinook 直升机首次通过直升机运送陆军轻型攻击车 (LSV) 的飞行试验。试飞员必须飞行并将飞机性能和参数保持在非常严格的公差范围内,而试飞员则忙于扫描 LSV 的视频记录以评估其稳定性,同时认真听取机上机组专家对飞行中负载行为的连续评论。快进一年后,在 2016 年巴耶利峇空军基地举行的 RSAF 开放日上,首次展示了空运 LSV 的新功能。可能相对不为人知的是,这些只是经过大量飞行测试后交付给新加坡空军的一些能力。在过去的三十年里,飞行测试在整合、测试和交付新加坡空军的新功能方面发挥了至关重要的作用。
“一切正常!”试飞员在飞机对讲机中呼叫,同时将测试的 Chinook 直升机稳定在所需的空速、爬升率和倾斜角参数范围内。这是新加坡共和国空军 (RSAF) Chinook 直升机首次以直升机方式运送陆军轻型攻击车 (LSV) 的飞行试验。试飞员必须飞行并将飞机性能和参数保持在非常严格的公差范围内,而测试指挥员则忙于扫描 LSV 的视频记录以评估其稳定性,同时仔细听取机上机组专家对飞行中负载行为的连续评论。快进一年后,在 2016 年在巴耶利峇空军基地举行的 RSAF 开放日上,空运 LSV 的新功能首次亮相。可能相对不为人所知的是,这些只是经过大量飞行测试后交付给 RSAF 的一些能力。在过去的 30 年里,飞行试验在新加坡空军新能力的整合、测试和交付中发挥了至关重要的作用。
“一切正常!”试飞员在飞机对讲机中呼叫,同时将测试的 Chinook 直升机稳定在所需的空速、爬升率和倾斜角参数范围内。这是新加坡共和国空军 (RSAF) Chinook 直升机首次以直升机方式运送陆军轻型攻击车 (LSV) 的飞行试验。试飞员必须飞行并将飞机性能和参数保持在非常严格的公差范围内,而测试指挥员则忙于扫描 LSV 的视频记录以评估其稳定性,同时仔细听取机上机组专家对飞行中负载行为的连续评论。快进一年后,在 2016 年在巴耶利峇空军基地举行的 RSAF 开放日上,空运 LSV 的新功能首次亮相。可能相对不为人所知的是,这些只是经过大量飞行测试后交付给 RSAF 的一些能力。在过去的 30 年里,飞行试验在新加坡空军新能力的整合、测试和交付中发挥了至关重要的作用。
“一切正常!”试飞员在飞机对讲机中呼叫,同时将测试的 Chinook 直升机稳定在所需的空速、爬升率和倾斜角参数范围内。这是新加坡共和国空军 (RSAF) Chinook 直升机首次以直升机方式运送陆军轻型攻击车 (LSV) 的飞行试验。试飞员必须飞行并将飞机性能和参数保持在非常严格的公差范围内,而测试指挥员则忙于扫描 LSV 的视频记录以评估其稳定性,同时仔细听取机上机组专家对飞行中负载行为的连续评论。快进一年后,在 2016 年在巴耶利峇空军基地举行的 RSAF 开放日上,空运 LSV 的新功能首次亮相。可能相对不为人所知的是,这些只是经过大量飞行测试后交付给 RSAF 的一些能力。在过去的 30 年里,飞行试验在新加坡空军新能力的整合、测试和交付中发挥了至关重要的作用。
我们解决这个问题的方法遵循两阶段流程:(1)自我运动估计和(2)检测和跟踪。这两个阶段都是全卷积神经网络,可以扩展到高分辨率输入。它们在 Amazon Prime Air 发布的标记数据集上进行训练,该数据集包含 330 多万张飞机、直升机、无人机和其他飞行物体的图像。我们还开发了自己的飞机数据收集系统,并设计了用于飞行中遭遇的定制视觉 DAA 有效载荷。通过对现实世界数据进行实证评估,我们的方法与两种基线检测和跟踪架构进行了比较,结果显示我们的方法更胜一筹。在 DAA 行业标准 (ASTM F3442/F3442M - 20) 的背景下分析我们的定量结果,我们还表明,所提出的方法可以满足某些类别无人机的视觉 DAA 监视要求,这些无人机的最低巡航速度为 60-90 节,最小转弯速率为 21-31 度/秒,最小爬升率为 250-500 英尺/分钟。
理论认为,机械变量指示的数值接近飞机在任何高度的真实垂直速度(见图 6)。参考1 和 2)。任何错误都是由于空气在内部泄漏处粘度的变化或空气通过时泄漏与外部大气之间的差异造成的。这些影响也可能导致爬升和下降的不同结果,因为下降过程中从大气中流入的空气的稳定性并不一定意味着上升过程中从容器中流出的空气的稳定性,其他条件相同。然而,这些影响可以通过建筑设计最小化,并且出于实际目的,可以使用现代航空器爬升率指示器来显示标准大气中的真实垂直速度。PZI 滑翔机变速计的实验室校准现在也不受其特性限制,尽管工厂条件不能产生适当的大气参数。就目前的目的而言,将假设机械变速计确实显示真实的垂直速度,当然,前提是在海平面上进行精确校准。
“一切正常!”试飞员在飞机对讲机中呼叫,同时将测试的 Chinook 直升机稳定在所需的空速、爬升率和倾斜角参数范围内。这是新加坡空军 (RsAF) Chinook 直升机首次用直升机吊运陆军轻型攻击车 (LsV) 的飞行试验。试飞员必须飞行并将飞机性能和参数保持在非常严格的公差范围内,而试飞员则忙于扫描 LsV 的视频记录以评估其稳定性,同时仔细聆听机上机组专家对飞行中负载行为的连续评论。快进一年后,在 2016 年巴耶利峇空军基地举行的 RsAF 开放日上,首次展示了空运 LsV 的新功能。可能相对不为人知的是,这些只是经过大量飞行测试后交付给 RsAF 的一些能力。在过去的三十年里,飞行测试在 RsAF 新功能的整合、测试和交付中发挥了至关重要的作用。