Aircraft Spruce & Specialty Co. 从加拿大 Elmwood Aviation 的设计师 Ron Mason 手中获得了广受欢迎的 Christavia MK1、Christavia MK2 和 Christavia MK4 自制飞机的设计权。Christavia 于 1982 年设计,作为任务场主力机。设计要求是短距起飞和降落、小型发动机(低油耗)、低失速速度、良好的巡航速度和爬升率、大客舱面积、低维护和高安全系数。Christavia 易于飞行,大客舱使长途飞行非常舒适。MK1(双座串联)、MK2(双座并排)和 Christavia MK4(四座)的设计图已售出 1000 多套。Aircraft Spruce 提供这些飞机的设计图,每套售价 225 美元,还有一份信息包,售价 10 美元。Aircraft Spruce 提供建造飞机的完整材料包。 CHRISTAVIA MK-1/MK-2 信息包........P/N 01-00662......$10.00
G700 TXi 玻璃升级包配备双 GTN 650,整合了曾经分散在大量仪器上的所有主要飞行、导航、天气、地形、交通和无线电频率读数,为机长和副驾驶位置提供了主飞行显示器 (PFD)。每个 PFD 都清晰地描绘了飞机的姿态、空速、爬升率、高度计和水平航向/航向信息。借助合成视觉技术 (SVT),您的机组人员现在可以在飞行时以逼真的 3-D 视图查看飞机周围的地形特征,从而增加了全新的安全级别。Garmin SVT 使用复杂的图形建模,跟踪导航系统的地形警报数据库,以重现这种看起来如此真实和栩栩如生的“虚拟现实”景观,几乎就像在晴朗的白天“从窗外”看到的景色一样——即使在稳定的 IFR 或夜间 VFR 条件下也是如此。此外,SVT 还提供飞行路径矢量,可预测飞机的方向,从而简化精确飞行。
我们解决这个问题的方法遵循一个两阶段流程:(1)自我运动估计和(2)检测和跟踪。这两个阶段都是完全卷积神经网络,可以扩展到高分辨率输入。它们在 Amazon Prime Air 发布的标记数据集上进行训练,该数据集包含 330 多万张飞机、直升机、无人机和其他飞行物体的图像。我们还开发了自己的飞机数据收集系统,并设计了一个定制的基于视觉的 DAA 有效载荷,用于飞行中相遇。通过对现实世界数据进行实证评估,我们的方法与两种基线检测和跟踪架构进行了比较,结果显示我们的方法更胜一筹。在 DAA 行业标准 (ASTM F3442/F3442M - 20) 的背景下分析我们的定量结果,我们还表明,所提出的方法可以满足某些类别的无人机的视觉 DAA 监视要求,这些无人机的最低巡航速度为 60-90kts,最低转弯率为 21-31 度/秒,最低爬升率为 250-500 英尺/分钟。
摘要。本文提出了一种新方法,以增强保形映射在地形跟随 (TF) 和地形规避 (TA) 飞行中最佳轨迹规划过程中的应用。新方法使用保形映射概念作为修饰工具,将由于存在障碍物而导致飞行高度受限的受限轨迹规划问题转换为没有障碍物和最小高度约束的再生问题。在这方面,利用 Schwarz-Christoel 定理将高度约束纳入飞机动态运动方程。然后通过数值方法(即直接 Legendre-Gauss-Radau 伪谱算法)求解再生的最优控制问题。优化了飞行时间、地形遮蔽和气动控制力的综合性能指标。此外,为了获得真实的轨迹,在求解算法中将飞机的最大爬升率和下降率作为不等式约束。二维飞行场景的几个案例研究表明该方法在 TF/TA 轨迹规划中的适用性。大量模拟证实了所提方法的有效性,并验证了解决方案的可行性,满足了问题的所有约束。
速度:海平面最大巡航速度 109 节,7000 英尺 75% 功率,106 节巡航:建议使用稀薄混合气,并预留燃油余量用于发动机启动、滑行、起飞、爬升,并以 45% 功率保持 45 分钟储备。7000 英尺 75% 功率 22.5 加仑可用燃油 7000 英尺 75% 功率 35 加仑可用燃油 10,000 英尺最大航程 22.5 加仑可用燃油 10,000 英尺最大航程 35 加仑可用燃油 海平面爬升率 实用升限 起飞性能:地面滑行总距离 50 英尺障碍物 着陆性能:地面滑行总距离 50 英尺障碍物 失速速度 (CAS):襟翼收起,动力关闭 襟翼放下,动力关闭 最大重量 标准空重:通勤者通勤者 II 最大有用载荷:通勤者通勤者 II 行李限额 机翼负载:磅/平方英尺 功率负载:磅/马力 燃油容量:标准油箱总数 远程油箱。油容量 发动机:Teledyne Continental 100 BHF,2750 RPM 螺旋桨:固定螺距,直径
* 速度:海平面最大速度 .......................123 节巡航,8000 英尺 80% 功率 .............122 节巡航:建议使用稀薄混合气,并预留发动机启动、滑行、起飞、爬升的燃油余量,并预留 45 分钟的储备。8000 英尺时功率为 80% 。...........航程 580 海里 53 加仑可用燃料时间 4.8 小时 航程在 10,000 英尺,60% 功率下。....航程 687 海里 53 加仑可用燃料时间 6.6 小时 海平面爬升率。...............720 FPM 服务上限 ..........................13,500 英尺起飞性能:地面滑行 ...........。。。。。。。。。。。。。。。。。。。。945 英尺 总距离超过 50 英尺 障碍物。。...........1685 英尺着陆性能:地面滑行 ...........。。。。。。。。。。。。。。。。。。。550 英尺总距离超过 50 英尺障碍物。。。。。。。。....1295 英尺失速速度:襟翼收起,动力关闭。...... div>.................51 KCAS 襟翼关闭,关机。......< div> 。。。。。。。。。。。。。。...47 KCAS 最大重量:坡道 ........。 。 。 。 。 。 。 。 . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 起飞。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 着陆。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . 标准空重。 。 。 。 。 。 。 。 < /div>。。。。。。。。.....。。。。。。。。。。。。。起飞。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。着陆。。。。。。。。。。。。。。。。。。。。。。。。。。。.....标准空重。。。。。。。。 < /div>.............最大有用负载 .....................行李限额 ............。。。。。。。。。。
1. 简介。轨迹跟踪是飞行控制系统的一项基本任务。在这一任务中,确保所采用的方法准确,特别是对干扰具有鲁棒性至关重要。这对于飞行的关键阶段(例如进近和着陆)尤其重要,因为飞行在拥挤的空域和近地飞行。在这些阶段,干扰引起的偏离参考轨迹可能会导致灾难性的后果。因此,风是飞行系统最危险的干扰之一,因为它不可预测,对飞机动力学影响很大。考虑到上述飞行条件下控制任务的关键性,迄今为止已经研究了几种用于此应用的方法。在 [19] 中,作者提出了一种 gamma/theta 制导律,用于跟踪已知风场的最优控制方法得出的轨迹。作者在垂直平面上制定了问题,并使用起飞阶段的数值示例说明了所开发的方法。 [15] 中的研究提出了一种自适应控制方案,利用该思想控制飞机在起飞阶段的爬升率。该反馈控制律不需要事先了解风场。[4] 中的作者将非线性空间反演方法应用于飞机轨迹跟踪。开发了一种新的垂直平面制导方案,与传统的基于非线性动态反演的方法相比,其跟踪性能有所提高。与 [19] 类似,需要对现有的风扰动进行先验估计。着陆飞行阶段被视为二维跟踪
2018 年 2 月 20 日 2018 年 2 月 20 日,0838L,一架 F-16CM,尾号 (T/N) 92-3883,在从日本三泽空军基地 (AB) 起飞的例行训练飞行中发生发动机起火,必须立即降落回三泽空军基地。事故飞机 (MA) 驻扎在日本三泽空军基地,隶属于第 35 战斗机联队第 13 战斗机中队。MA 发动机受损,外部油箱丢失,政府损失估计为 987,545.57 美元。事故航班 (MF) 由两架 F-16CM 飞机组成。事故航班的飞行前检查、起飞和滑行都平安无事,直到起飞阶段。事故飞行员 (MP) 离开 28 号跑道 (RWY),比事故长机飞行员 (MLP) 晚离开加力起飞后不久,三泽空中交通管制员通知 MP 和事故领航员 (MLP),MP 飞机后部出现大火。MLP 还就火灾问题联系了 MP。在 MP 上升过程中,他注意到空速和爬升率意外下降。MP 右转返回 28 跑道,当无法保持空速或高度时,MP 按照 F-16CM 关键行动程序抛弃了外挂物(外部油箱)。抛弃后,MA 恢复了一些空速,并实现了更好的爬升率,进入着陆位置。MP 降落在 28 跑道上,并完成了紧急发动机关闭和紧急地面疏散关键行动程序。事故没有造成人员伤亡。MP 在事故过程中的行动是专注、精确和适当的;他的行为不是事故的原因。对维护程序的审查发现了导致事故的几项过去的行为。AIB 主席根据大量证据发现,事故原因是过时的部件断裂,导致发动机过热。2012 年,维护人员订购并安装了一个过时的部件——涡轮框架前整流罩,而几年前它被一个由更坚固的材料和设计制成的前整流罩所取代。物流系统随后运送了过时的前整流罩。维护人员使用更新版本的支架硬件将过时的前整流罩安装在事故发动机 (ME) 上。过时的前整流罩材料较弱,加上不匹配的硬件造成的磨损,最终导致前整流罩在起飞时断裂。断裂后,一块前整流罩被抬起并阻塞了发动机周围的冷却气流,导致阻塞附近区域过热并起火。 AIB 主席进一步通过大量证据发现,2012 年至 2015 年期间的维护实践是导致事故发生的重要原因。根据 10 USC§2254(d)事故调查人员在事故调查报告中对事故原因或促成事故的因素的意见(如果有)不得作为因事故引起的任何民事或刑事诉讼的证据,此类信息也不能被视为美国或这些结论或声明中提及的任何人对责任的承认。
1.4 定义 A AEO 所有发动机可操作的飞机类别 在法规中,不同的规则适用于不同的类别 Far23 特技飞行 设计用于承受高 g 负载以实现高级飞行。仅限制飞行测试。实用有限的特技动作。最大 90 度倾斜。正常 正常动作。最大 60 度倾斜。通勤 螺旋桨驱动,受正常类别限制。Far25 运输 正常动作。前三个类别的重量限制为 5650 公斤,乘客限制为 9 人,第四个类别的重量限制为 8600 公斤,乘客限制为 19 人,第五个类别没有重量或座位限制。高度 以英尺或米为单位测量的离地高度。AMC 参见 MAC。攻角 翼型弦线与相对气流之间的角度。纵横比 机翼细长的量度。AR = b 2 /S,其中 b = 翼展,S = 机翼参考面积。B 平衡 不同的重量分布在整个飞机上,以平衡飞机并获得所需的重心位置和范围。银行 可以取出现金的地方。这里与飞机在滚转轴上的倾斜程度有关。以度为单位。BFL 平衡场长度。参见演示。BWB 翼身融合。C CD 0 零升力阻力系数是与升力无关的飞机阻力。重心 固体的重量集中在一点。CGR 参见爬升梯度 爬升率 与飞机在垂直平面上的移动速度有关。以 ftp(英尺/秒)为单位
可再生能源的间歇性是将可再生能源发电整合到电网的主要挑战之一。可再生能源的变化或可用的可再生能源预测误差可以通过在电网中纳入分布式能源存储系统 (ESS) 来解决 [1]–[4]。与电网连接的 ESS 的优势包括削减峰值负荷和降低发电机爬升率。然而,在将 ESS 模型纳入优化问题时,特别是凸最优潮流 (DC OPF) 问题,由于使用无损 ESS 模型 [5] 或非凸 ESS 操作模型,需要使用计算限制方法 [3],[6],因此确保适当的 ESS 动态可能会受到很大限制。在本文中,我们对与电网连接的 ESS 模型的凸松弛进行了分析,该模型在 DC OPF 问题中有单独的充电和放电项。我们考虑一个一般的直流 OPF 问题,它协调传统发电机、分布式可再生能源和受网络功率流约束的 ESS,以满足网络负载,同时最小化发电成本并考虑发电容量约束。在这项工作中,我们使用 Karush Kuhn-Tucker (KKT) 条件来展示何时解决科学问题,科罗拉多大学博尔德分校,科罗拉多州博尔德,80309 美国(电子邮件:{kaitlyn.garifi; kyri.baker}@colorado.edu)。当使用建议的放松 D. Christensen 时,ESS 同时充电和放电的直流 OPF 问题不是最优的,他是国家可再生能源实验室的成员,科罗拉多州戈尔登,80401 美国(电子邮件:dane.christensen@nrel.gov)