扰动观察算法是最简单的算法,它不需要关于风能转换的先验知识。这种算法也称为爬山搜索算法。这种算法不需要任何速度传感器。这种方法观察输出功率的变化,并调整直流-直流转换器的占空比,以调整转子的速度。如果合适的功率P变化为正,就会发生变化,该变化将发生在最大功率点的方向上,并继续沿着同一路径变化,直到达到MPPT。如果P的变化为负,则必须修改扰动的方向,因为这表明MPP经历了重大修改。P&O算法的工作原理如图5所示。[17]中的混合MPPT算法使用P&O和ORB来克服系统的缺点。
建模和搜索。问题表示方法(状态空间表示、问题分解、约束满足问题、逻辑表示),使问题可以被视为路径查找问题。路径查找问题的图形表示。AND/OR 图。搜索系统的总体方案。搜索系统的控制策略和启发式方法。启发式搜索。著名的不可撤销策略:爬山搜索、禁忌搜索、模拟退火算法。尝试性策略:回溯算法和图搜索算法(A*、B、EMA* 等)。进化算法。双人游戏。游戏的表示。获胜策略。子树评估:极小最大算法和 alpha-beta 剪枝。机器学习简介。监督学习和一些示例(k-最近邻方法、决策树、随机森林、深度学习)。无监督学习和一些示例(k-均值算法、主成分分析)。
户外娱乐依赖于良好的管理者和健康的公共土地和水域。人们到公共土地上远足、打猎、钓鱼、骑自行车、爬山、露营、划船,体验大自然的景色和声音。所有这些活动都依赖于支持风景优美的景观、丰富的野生动物以及清洁的空气和水的弹性生态系统。气候变化通过干旱和灾难性的野火对户外娱乐产生了特殊影响,强调了需要有弹性的公共土地,以便在不断变化的未来继续提供娱乐机会。除了保护和维护提供优质户外娱乐体验的弹性景观外,拟议规则还将优先恢复退化的土地和水域。修复工作可以增强公共土地上的娱乐体验,并为当地社区提供开展可持续娱乐活动的机会。
本文提出了一种对具有多个耦合自由度的量子系统进行近似最优控制模拟的方法。使用相互作用图中的一阶马格努斯展开来模拟时间演化,其中不同自由度之间的耦合被视为扰动。提出了一种数值实现程序,利用成对耦合和零阶时间演化算子的可分离性来降低计算成本,并根据自由度数对其进行了分析。该公式与无梯度方法兼容,可以优化控制场,并为此采用了随机爬山算法。作为说明,在控制场的影响下,对两个和三个偶极-偶极耦合分子转子系统进行了最优控制模拟。对于双转子系统,优化场以实现取向或纠缠目标。对于三旋翼系统,磁场经过优化,要么使所有三个旋翼朝向同一方向,要么使一个旋翼朝向特定方向,而另外两个旋翼指向相反方向。
评估 ML 算法的性能 UNIT - I:简介:AI 问题、代理和环境、代理结构、问题解决代理基本搜索策略:问题空间、无信息搜索(广度优先、深度优先搜索、深度优先与迭代深化)、启发式搜索(爬山法、通用最佳优先、A*)、约束满足(回溯、局部搜索) UNIT - II:高级搜索:构建搜索树、随机搜索、AO* 搜索实现、极小极大搜索、Alpha-Beta 剪枝基本知识表示和推理:命题逻辑、一阶逻辑、前向链接和后向链接、概率推理简介、贝叶斯定理 UNIT - III:机器学习:简介。机器学习系统,学习形式:监督学习和无监督学习,强化 – 学习理论 – 学习可行性 – 数据准备 – 训练与测试和拆分。第四单元:监督学习:回归:线性回归、多元线性回归、多项式回归、逻辑回归、非线性回归、模型评估方法。分类:支持向量机 (SVM)、朴素贝叶斯分类
在航空航天工业中,疲劳裂纹扩展对飞机结构机械装配设计构成了严重威胁。在这些结构中,裂纹扩展是一个需要认真处理的问题,因为除了经济损失之外,还会影响人员生命安全。疲劳裂纹扩展 (FCG) 速率是在恒定振幅载荷作用下,裂纹随循环数增长的速率。分析曲线后发现,应力强度因子 (SIF) 范围“ ∆𝐾 ”与 FCG 速率“ 𝑑𝑎 𝑑𝑁 ⁄ ”之间的相关性呈偏离线性关系,曲线的区域 II 也称为巴黎区域。经验公式方法不能令人满意地处理线性因子。与之前的方法相比,机器学习算法凭借其出色的学习能力和灵活性,能够更好地处理非线性问题。在本研究工作中,利用基于遗传算法、爬山算法和模拟退火算法的优化神经网络来预测 FCG 率。通过对 2324-T39、7055-T7511 和 6013-T651 等不同航空铝合金进行测试,验证了所提出的技术。通过基于模拟退火的优化神经网络,对铝合金 6013-T651 的最小预测 MSE 为 1.0559 × 10 −9。此外,结果与实验过程中设想的数据非常吻合。
摘要。本文介绍了 MCTS-BN,它是蒙特卡洛树搜索 (MCTS) 算法的一种改编,用于贝叶斯网络 (BN) 的结构学习。MCTS 最初设计用于博弈树探索,现已重新用于解决学习 BN 结构的挑战,方法是探索贝叶斯网络中潜在祖先顺序的搜索空间。然后,它采用爬山法 (HC) 从每个顺序中得出贝叶斯网络结构。在大型 BN 中,变量顺序的搜索空间变得巨大,在推出阶段使用完全随机的顺序通常不可靠且不切实际。我们采用半随机方法来应对这一挑战,方法是结合从其他启发式搜索算法(如贪婪等价搜索 (GES)、PC 或 HC 本身)获得的变量顺序。这种混合策略减轻了计算负担并提高了推出过程的可靠性。实验评估证明了 MCTS-BN 在改进传统结构学习算法生成的 BN 方面的有效性,即使在基础算法阶数次优的情况下也表现出稳健的性能,并且在提供有利阶数时超越了黄金标准。
科目代码:CCSCA11 核心课程 XIII - 人工智能 第一单元 人工智能定义 – 人工智能技术 – 人工智能应用 – 问题 – 问题空间和搜索 – 将问题定义为状态空间搜索 – 生产系统 – 问题特征。 第二单元 启发式搜索 – 生成和测试 – 爬山法 – 广度优先搜索 – 最佳优先搜索 – 问题简化 – 约束满足 – 手段目的分析。 第三单元 游戏 – 极小最大搜索 – 添加 alpha – beta 截止值 – 谓词逻辑 – 表示简单事实和逻辑可计算函数和谓词 – 解析 – 自然演绎。 第四单元 使用规则表示知识 – 程序性与陈述性知识 – 前向推理与后向推理 – 非单调推理。 第五单元 专家系统 – 结构 – 组件 – 专家系统开发过程 – 专家系统开发工具。 教科书:1. Elaine Rich 和 Kevin Knight 著《人工智能》,Tata McGraw Hill,第二版。 2. David Rolston 著《人工智能与专家系统开发原理》,McGraw Hill。 3.《人工智能与专家系统》,K.Meena 和 R.Dhanapal 著,国际图书,2000 年。
第一单元:人工智能问题:人工智能技术 – 成功标准 – 将问题定义为状态空间搜索 – 生产系统 – 特征 – 问题特征。第二单元:启发式搜索技术:生成和测试 – 爬山法 – 最佳优先搜索 – 问题简化 – 约束满足 – 手段最终分析。第三单元:知识表示问题:知识表示方法 – 框架问题 – 可计算函数和谓词 – 解析 – 程序性知识与陈述性知识。第四单元:机器人基础:机器人简介、分类、机器人历史、机器人的优缺点、机器人组件、机器人自由度、机器人关节和坐标、机器人工作空间、机器人范围、机器人语言。UNIT-V -:传感器:介绍机器人的内部和外部传感器、位置传感器、速度传感器、加速度传感器、声纳和红外传感器、触摸和触觉传感器。机器人的应用:机器人的应用、机器人的选择、机器人应用的经济因素和理由;安全要求。教科书 1.Elaine Rich 和 Kevin Knight,《人工智能》,Tata McGraw Hill,第二版。2.Craig J J,“机器人学、力学和控制导论”,Pearson Education,新德里,2004 年。参考书 1.Saeed B Niku,“机器人学导论”,Pearson Education,新德里,2003 年。2.George F Luger,“人工智能”,Pearson Edition 出版物,第 4 版
我们通过调整语言模型以超过A/B测试结果来开发一个通用框架,以优化营销传播的内容。我们微调了一种语言模型,将较低表现的内容转换为表现较高的变体,教会其在文本空间中进行爬山。部署后,该模型会改善人类提出的营销内容。此设计可确保AI援助不太可能损害绩效,从而减轻实施风险并促进组织的采用。我们通过电子邮件营销中的大规模现场实验来验证我们的框架。在涵盖2.83亿印象的36个活动中,在我们调整的模型的协助下创建的主题行实现了单击的速度,比未经辅助的人类专家创造的汇率高33%。这些绩效增长是由于内容质量的提高而有因果关系,从而确认了我们框架的有效性。此外,具有30倍的通用语言模型该参数无法改善结果,而我们较小的微调模型成功,这表明域特定于适应性是必要的,并且相对较小的语言模型就足够了。我们的发现提供了实验证据,表明语言模型可以从A/B测试中提取可概括的见解,从而实现从文案到创意设计的非结构化营销决策的系统优化。