使用三重晶体X射线衍射研究了光子退火对硼掺杂CZ-SI晶状体晶体结构中变形的影响。具有卤素灯灯(光子退火模式)和快速热退火的双面抛光硅晶片的整个表面的常规退火产生压缩变形。在相对较低的晶圆温度下(小于55°C),使用特殊的光电板将多个分离的晶圆区域(局部光子退火模式)提供局部退火,可产生拉伸变形。但是,如果退火晶片的反向侧面包含机械固定层,则不会观察到这种效果。已经提出了一种解释实验结果的机制,可用于合成光电转换器结构中的电荷泵。
报告文档页面表格批准OMB 编号 0704-0188 估计此信息收集的公共报告负担每份回应平均需要 1 小时,其中包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将关于此负担估算或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至华盛顿总部服务处、信息运营和报告理事会,1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,以及管理和预算办公室、文书工作减少项目(0704-0188)华盛顿特区 20503。1. 仅供机构使用(留空)2. 报告日期 2012 年 12 月3. 报告类型和涵盖日期硕士论文4. 标题和副标题故意制造的美国政府技术微芯片漏洞:风险和国土安全影响
傅里叶变换红外衰减的总反射(FTIR-ATR)已广泛用于研究表面和界面上的吸附和反应。与其他技术不同,例如荧光,无线电标记和电动检测,FTIR-ATR不需要额外的标签,并且可以提供有关系统的大量信息。因此,FTIR-ATR具有许多潜在的生物学应用,并且有望成为一种高敏感,无标签和通用的生物传感方法。近年来,FTIR-ATR生物学应用的主要研究工作集中在(a)原位观察蛋白质或细胞吸附[1-5]; (b)生物膜的结构和方向分析[5-11]; (c)检查酶促反应[12,13]。我们的兴趣集中于FTIR-ATR的生物传感应用,以检测与固定的DNA或寡核苷酸(Oligo)探针有关的生化过程。